Основные классы неорганических соединений
К неорганическим соединениям относят все сочетания химических элементов, которые не содержат углерод. Большинство известных соединений являются органическими, однако известно около 20 миллионов тех, которые принадлежат к классу неорганических. Огромное количество вызывает необходимость их классификации, то есть деления на группы.
Каждое из этих веществ обладает своими характеристиками, и поэтому можно выделить основные классы неорганических соединений. Для любого из них характерны различные способности взаимодействия с другими веществами, свои свойства. Химия, классы неорганических соединений в которой занимают важное место, рассматривает их классификацию с нескольких точек зрения.
Классификация неорганических веществ
Можно выделить несколько категорий, по которым подразделяются классы неорганических соединений. В соответствии со своим строением они могут быть простого и сложного состава. Простые вещества состоят из атомов одного вида. Они могут быть металлами и неметаллами. В некоторых источниках можно встретить информацию, что к простым веществам относят также благородные газы и амфотерные простые вещества.
Характеристика металлов
Атомы металлических соединений связаны между собой при помощи особой металлической связи, образуя кристаллическую сеть. Ионы металлов связываются между собой, образуя электронное облако.
Кристаллическая сеть создается всеми металлами, и этим обусловлены общие свойства большинства этих простых неорганических веществ. Например, такими свойствами являются высокая теплопроводность, пластичность, прочность, непрозрачность, высокая электропроводность.
Неметаллы
Неорганические соединения неметаллической природы отличаются большим многообразием. В этой группе можно встретить вещества в твердом, жидком и газообразном состоянии. Примером твердого неметалла может служить сера, фосфор и т. д.; газообразного – водород, хлор; жидкого – бром.
Газообразные неметаллы обычно существуют в природе в виде двухатомных молекул, кроме благородных газов, которые существуют в виде одноатомных. Жидкие неметаллы также часто имеют молекулярное строение. Твердые вещества чаще всего образуют кристаллическую сеть, то есть обладают немолекулярным строением.
Сложные неорганические вещества
Чаще всего можно встретить классификацию сложных веществ по строению. Поэтому важнейшие классы неорганических соединений выглядят следующим образом:
1. Оксиды.
2. Гидроксиды:
- кислоты;
- основания;
- амфотерные гидроксиды.
3. Соли.
Некоторые источники выделяют кислоты, основания и амфотерные гидроксиды как самостоятельные пункты классификации, однако в связи с тем, что и первые, и вторые, и третьи являются результатом взаимодействия оксидов с водой, все эти категории относят к гидроксидам.
Оксиды
Оксиды являются веществами, которые имеют в своем составе 2 элемента (или более), причем один из них - это обязательно кислород. Общая формула оксидов имеет вид ЭхОу.
В зависимости от того, как взаимодействуют оксиды с другими веществами, их подразделяют на 3 категории: амфотерные, кислотные и основные.
Свойства классов неорганических соединений имеют значение при определении возможных реакций с их участием. Так, амфотерными являются те оксиды, которые при вступлении в реакцию с кислотами и основаниями образуют соли и воду. При вступлении в реакцию с водой данные соединения могут обладать кислотными и основными свойствами, то есть образовывать как кислоты, так и основания. К амфотерным относят соединения алюминия, хрома III, бериллия, железа III, цинка. Кислотные оксиды вступают в реакцию с водой и образуют кислоту, а при взаимодействии с основаниями - соли. Основные оксиды в реакции с водой образуют основания, а с основаниями – тоже соли.
В соответствии с другой классификацией, оксиды также делят по способности образовывать соли на солеобразующие и несолеобразующие. Несолетворные оксиды образуют кислоты, и для них невозможны реакции с образованием солей.
Гидроксиды
Эти соединения получают путем присоединения воды к оксидам либо косвенно в процессе ряда реакций. Те гидроксиды, что образованы основными оксидами, называют основаниями, а те, что образуются из амфотерных оксидов, – амфотерными гидроксидами.
Кислоты
Эти сложные вещества входят в основные классы неорганических соединений, состоят из водорода и кислотного остатка. Наименование последнего позволяет дать название той или иной кислоте.
Кислоты как классы неорганических соединений могут быть одно-, двух- и трехосновными, что зависит от количества атомов водорода в их составе. Примером одноосновной кислоты служит соляная кислота (HCl), двухосновной – серная (H2SO4), а трехосновной – фосфорная (H3PO4).
Кислотные остатки также имеют свою классификацию, могут быть кислородсодержащими и бескислородными.
Атомы металлов способны замещать водород в кислотах, в таком случае получаются соли.
Понятие о солях
В основные классы неорганических соединений входят также соли. Это продукт замещения атомами металла водорода в кислотах или гидроксильных групп оснований на кислотные остатки. Соли образуются тогда, когда различные классы неорганических соединений взаимодействуют между собой.
В зависимости от степени замещения атомов различают средние, кислые и основные соли. Если происходит полное замещение атомов, то образовавшаяся соль средняя, если частичное, то, соответственно, кислая или основная. В том случае, когда состава реагентов достаточно для полного замещения, образуется средняя соль.
Когда при взаимодействии не хватает кислоты для получения средней соли, говорят о получении основной соли.
При вступлении в реакцию металлов с неметаллами образуется бескислородная соль, а когда в реакцию вступает кислотный и основный оксид, получают кислородсодержащую соль.
Понятие о связи между классами неорганических соединений
Выше мы упоминали о том, что некоторые вещества получают только косвенным путем, посредством нескольких реакций. Существует связь между классами неорганических соединений, о которой можно говорить в связи с тем, что различные сложные элементы вступают в реакции между собой, образуя новые вещества. Например, соль образуется при взаимодействии кислот с основаниями. Это так называемая генетическая связь классов неорганических соединений, суть которой в том, что взаимодействие происходит между разными классами неорганических веществ. Так, в реакции вступают основные и кислотные оксиды, основания и кислоты, металлы и неметаллы и т. д. Основные классы неорганических соединений, взаимодействуя, обеспечивают химические свойства этих групп веществ.
Вот некоторые из примеров, подтверждающих генетическую связь между разными классами соединений:
- Металлы при взаимодействии с неметаллами образуют соли.
- Металлы при взаимодействии с кислородом образуют оксиды.
- Неметаллы, соответственно, образуют в реакции с кислородом оксиды неметаллов.
- Основные и амфотерные оксиды, вступая в реакцию с кислотами или кислотными оксидами, образуют соли.
- Кислотные оксиды образуют соли при реакции с основаниями или основными оксидами.
- Кислотные оксиды вступают в реакцию с водой и образуют кислоты.
- Основания, вступая в реакцию с амфотерными гидроксидами, образуют соли.
Таким образом, деление на классы неорганических соединений позволяет сгруппировать их огромное количество и определить принципы их взаимодействия между собой и другими веществами. Кроме того, подобная группировка способствует более легкому усвоению и запоминанию свойств различных неорганических соединений.
Похожие статьи
- Химия. Оксиды: их классификация и свойства
- Теория электролитической диссоциации — одна из основных в химии
- Оксид калия: формула, взаимодействие
- Органические соединения. Классы органических соединений
- Основные законы химии. Основные понятия и законы химии
- Неорганическая химия: понятие, вопросы и задачи. Что изучает неорганическая химия
- Класс опасности химических веществ. Перечень, таблица классов опасности химических веществ