Как найти объем куба: варианты задач и их решение

0
0

Современные технологии создают удивительные компьютерные программы. Они позволяют увидеть тела в объеме и покрутить их в разных направлениях, чтобы получше рассмотреть. Воображение человека не всегда на это способно. Немногие могут отчетливо представить предмет и увидеть его как бы насквозь. Но такое умение можно попытаться сформировать при решении задач по геометрии. Например, тех из них, в которых говорится о том, как найти объем куба. Это отличная практика для развития пространственного воображения.

как найти объем куба

Куб или параллелепипед?

Это непустой вопрос. Потому что классификация важна. Ведь куб — это особая форма прямоугольного параллелепипеда.

Последний представляет собой фигуру, в которой 6 граней, и все они прямоугольники. Углы, под которыми пересекаются все ребра, 90º. Соответственно, если эти грани станут квадратами, то и вся фигура преобразится в куб.

найти объем куба

У прямоугольного параллелепипеда все линейные размеры, то есть высота, длина и ширина, могут существенно отличаться. В кубе же они всегда равны друг другу. Это его отличительный признак. Поэтому в задачах, которые требуют найти объем куба, рассмотренный момент непременно учитывается. Кстати, он существенно упрощает все математические записи и вычисления.

Условные обозначения в формулах и задачах

Без этого пункта будет сложно понять, как записаны формулы. Что подразумевается под каждой буквой и символом, подскажет следующая таблица.

Обозначения, принятые в формулах
СимволНазвание элемента
аребро фигуры
ддиагональ грани
Ддиагональ куба
общепринятые в геометрии символыплощадь
объем

Как найти элементы куба по его стороне?

Поскольку грань фигуры — это квадрат, то ее площадь определится по формуле №1, в которой известную величину нужно возвести в квадрат:

площадь грани

А диагональ любой грани вычисляется по формуле №2, в которой сторона умножается на корень из 2:

диагональ грани

Предыдущая формула получается из теоремы Пифагора. Это легко понять, если увидеть, что диагональ грани — это гипотенуза прямоугольного треугольника. А катетами его становятся стороны квадрата.

Чтобы определить диагональ куба, нужна будет следующая формула №3, содержащая известную сторону и квадратный корень из 3:

диагональ куба

Она тоже получается из теоремы Пифагора. Только в качестве гипотенузы выступает искомая диагональ. Катетами же становятся сторона квадрата и его диагональ.

Иногда требуется знать формулу для вычисления площади боковой поверхности этой фигуры. В ней квадрат стороны умножается на 4. Вот она (№4):

площадь боковой поверхности

Понять, как получается эта формула, несложно. Боковых граней — 4. А это значит, что их общая площадь - учетверенное значение площади одного квадрата.

Если нужно определить площадь всей поверхности, то используют эту запись, в которой ушестеряется квадрат ребра (формула №5):

площадь поверхости куба

Она получается аналогично предыдущей формуле, только число квадратов увеличилось до 6.

как вычислить объем куба

Что такое объем?

Если говорить просто, то это место, которое занимает любое тело в пространстве. Любой предмет ограничен в пространстве поверхностями. Их может быть несколько, но возможны случаи, когда только одна. Например, если тело — это шар. Но эти поверхности обязательно замкнуты. Пространство, которое занимает геометрическое тело, и будет его вместимостью, или объемом.

Единицы измерения объема

Когда речь идет о твердых телах, то единицами объема всегда будут кубические величины. К примеру, метр, сантиметр или километр в кубе. Для жидкостей приняты литры, которые выражаются через кубические дециметры. Но если они занимают очень большие объемы, то их измеряют также в кубических метрах. Например, при учете расхода воды в квартире ее считают в м3. Так получается удобнее и проще в числовом выражении.

Способ 1: узнать объем куба, если известна сторона

Это самый простой из методов, который подскажет, как найти объем куба. Он заключается в том, чтобы просто возвести значение стороны в третью степень. Другими словами, нужно умножить сторону на себя три раза. По аналогии с произвольным прямоугольным параллелепипедом, когда нужно было умножать все его линейные размеры. Формула будет записана так (№6):

объем куба по стороне

Способ 2: известна площадь всей поверхности

В этом случае нужно будет разделить известную величину на 6. Из промежуточного ответа извлечь квадратный корень и возвести число в куб. Если записать это формулой, то получится следующее (№7):

объем куба по площади его поверхности

Способ 3: дана диагональ грани куба

Для того чтобы узнать, как вычислить объем куба, в этом случае нужно выполнить следующие действия. Сначала возвести известное значение в куб, а потом умножить его на квадратный корень из 2 и разделить на 4. Формула для этой задачи (№8):

объем куба по диагонали грани

Это уравнение получается таким образом: известную диагональ нужно разделить на корень из двух. Потом число возвести в третью степень. После выполнения преобразований получается в числителе куб диагонали, а в знаменателе 2√2. Математика требует, чтобы под чертой не было иррационального числа. Поэтому от него избавляются путем умножения на √2. Тогда в числителе появляется √2, а в знаменателе получается 4.

чертеж куба

Способ 4: по диагонали куба

Формула, которая подскажет, как найти объем куба, будет содержать действия: возведение в квадрат диагонали, умножение ее на корень из 3 и деление всего на 9. Она будет записана так (№9):

объем куба по его диагонали

Аналогично предыдущей формуле, в этой записи сначала диагональ делится на корень из трех и возводится в куб. После преобразований в знаменателе также появляется иррациональность, от которой нужно уходить. Так, в числителе возникает величина √3, а под чертой — 9.

Примеры заданий

Задача первая. Дан куб с ребром 12 см. Вычислить его объем и выразить ответ в квадратных метрах.

В этом задании будет сложнее перевести ответ в другие единицы, чем решить, как найти объем куба. Для выполнения первой части задания потребуется формула, записанная под номером 6. После возведения в куб числа 12 получится ответ 1728 см3. Теперь нужно вспомнить, как перевести их в кубические метры. Для этой цели ответ нужно разделить на 100 три раза. Сотня появилась из того факта, что в одном метре именно сто сантиметров. А деление выполняется трижды, потому что единицы в задании кубические. Итак, 1728 разделенное на 100 даст 17,28. После второго деления получится 0,1728. Третье действие даст ответ 0,001728 м3. Это и есть ответ задачи: объем куба равен 0,001728 м3 .

Задача вторая. Имеется куб с площадью всей его поверхности, равной 600 дм2. Найти объем фигуры и выразить его в кубических метрах.

Для ответа на вопрос этого задания будет нужна формула номер 7. Первым действием известное число делится на 6. В ответе получается 100. Из него легко извлечь квадратный корень, он будет равен 10. Теперь десятку нужно возвести в куб. Так получается, что искомая величина равна 1000 дм3. Осталось перевести его в м3. Как и в предыдущей задаче, деление будет выполняться три раза, только делителем будет 10. Потому что в одном метре десять дециметров. После деления получается ответ равный 1 м3. Ответ: объем равен 1 м3.

геометрия

Задача третья. Дан куб с длиной диагонали его грани, равной √2 мм. Нужно вычислить объем.

Восьмая формула поможет в том, как найти ответ в этой задаче. Первым делом нужно возвести в куб известную величину. Квадратный корень из 2 в третьей степени даст значение 2√2. После умножения на √2 получится число 4. Последним действием нужно его разделить на 4. Ответ: объем куба 1 мм3.

Задача четвертая. Известно, что диагональ куба равна 3 м. Требуется вычислить его объем.

Будет просто найти ответ на эту задачу по формуле под номером 9. Величину, которая дана в условии, нужно возвести в куб. Получится 27. После его деления на 9 ответ станет равен 3. И последним действием его нужно умножить на квадратный корень из 3. Ответом задачи будет 3√3 м3.