Плазменные двигатели: мифы и реальность

0
0

Наверняка каждый человек согласится с тем, что космос манит. И он уже исследуется! Вот только очень медленно. Потому что крайне сложно создать космический аппарат, который мог бы быстро преодолеть внушительные, исчисляемые сотнями тысяч километров расстояния.

Вся суть в топливе! Оно не бесконечное. Нужны современные агрегаты с другим принципом работы, и помощнее. Да, есть ядерные ракетные двигатели (ЯРД). Но их максимальный предел – 100 км/сек. К тому же их рабочее тело нагревается в ядерном реакторе.

А вот плазменные двигатели – это перспектива, которая заслуживает внимания.

плазменные двигатели

Краткий экскурс в физику

Для начала стоит отметить, что любому ракетному двигателю свойственно выбрасывание из сопла слабо ионизированной плазмы. Вне зависимости от его вида. Но «классическими», настоящими плазменными двигателями являются те, которые ускоряют плазму благодаря электромагнитным силам, оказывающим воздействие на заряженные частицы.

Процесс сложный. Любое электрическое поле, которое ускоряет в плазме заряды, придаёт электронам и ионам равные по модулю суммарные импульсы. Вдаваться в эти подробности необязательно. Достаточно знать, что импульс – это величина измерения механического движения тела.

Поскольку плазма является электрически нейтральной, то сумма всех положительных зарядов равна по модулю сумме отрицательных. Есть определённый отрезок времени – он бесконечно мал. За эти считаные мгновения все положительные ионы получают мощный импульс. Такой же направляется в обратную сторону - к отрицательным. Что получается? Суммарный импульс в итоге равен нулю. А значит, тяги не возникает.

Такой вывод: для электрического «разгона» плазмы необходимо разделение разноименных зарядов. Положительные будут разгоняться тогда, когда отрицательные выведены из зоны действия. Сделать это сложно, так как кулоновские силы притяжения восстанавливают электрическое равновесие, возникая между плазменными разноимённо заряженными сгустками.

И как же удалось воплотить этот принцип работы в плазменном ракетном двигателе? За счёт магнитных и электростатических полей. Только вот во втором случае агрегат традиционно именуется ионным, а в первом – именно плазменным.

Концепт из 60-х

Порядка пятидесяти лет тому назад советский физик Алексей Иванович Морозов предложил концепт плазменного ракетного двигателя. Его с успехом испытали в 70-х.

В нём для разделения пресловутых зарядов использовалось радиальное магнитное поле. Получается, что электроны, поддаваясь воздействию силы Лоренца, будто бы по спирали навиваются на силовые линии магнитного поля, которое их «выдёргивает» из плазмы.

Что при этом происходит? Массивные ионы инерционно проходят магнитное поле, набирая ускорение в продольном направлении электрического поля.

Да, данная схема имеет преимущества перед той, которая реализована в плазменно-ионных двигателях, однако есть и минус. Она не даёт возможности добиться большей тяги, что отражается на скорости.

 плазменный ракетный двигатель

Реален ли путь к звёздам?

На плазменные ракетные двигатели возлагалось немало надежд. Однако какими бы инновационными они ни казались, полёт до далёких небесных тел в рамках одной человеческой жизни обеспечить не могут.

Чтобы придать аппарату достаточный для этого тяговый импульс (а это как минимум 10 000 000 м/сек), нужно создать магнитное поле нереальной на данный момент мощности в 10 000 Тесла. Это возможно лишь с помощью взрывомагнитных генераторов А.Д. Сахарова и прочих современных аппаратов, работающих по тому же принципу.

Но опять-таки, такие мощные поля существуют на протяжении катастрофически малого временного отрезка, измеряемого в микросекундах. Чтобы добиться лучшего результата, приходилось бы утилизировать энергию ядерного взрыва силой в 10 кт. Для справки – последствия такого «явления» выражаются в 4-километрового диаметра облаке высотой в 2 км. А «гриб» и вовсе достигает вверх 7 км.

Так вот, при массе корабля в 100 тонн потребовался бы миллион подобных импульсов. И это лишь для увеличения его скорости на 100 километров в секунду! К тому же только при условии, что заряды не понадобилось бы брать в путь на борт. В вероятности они могли бы быть размещены в космическом пространстве на участке разгона.

Но целый миллион ядерных бомб? Нереально. Это тысячи тонн плутония! А его за всё время существования ядерного оружия произвели чуть больше 300 тонн. Так что плазменный ракетный двигатель с принципом работы, основанным на магнитном разделении зарядов, путь к далёким звёздам не обеспечит.

абляционный импульсный плазменный двигатель

Холловский двигатель

Это вариант плазменного агрегата, для которого нет ограничений, что налагаются объёмным зарядом. Их отсутствие обеспечивает большую плотность тяги. А это значит, что холловский плазменный двигатель может увеличить скорость космических аппаратов в разы, если сравнивать, например, с ионным агрегатом того же размера.

В основе работы аппарата лежит эффект, который открыл американский физик Эдвин Холл в 1879 году. Он продемонстрировал, как в проводнике с взаимно перпендикулярным магнитным и электрическим полем образуется электроток. Причём в направлении, которое им обоим перпендикулярно.

Проще говоря, в холловском агрегате плазма образуется зарядом между анодом (+) и катодом (-). Действие несложное - разряд отделяет электроны от нейтральных атомов.

Стоит отметить, что на околоземных орбитах сосредоточено порядка 200 спутников с холловскими плазменными двигателями. Для космических аппаратов его мощности хватает вполне. К слову, именно такой агрегат использовался Европейским космическим агентством в целях экономичного разгона SMART-1 – его первой автоматической станции для исследования Луны.

АИПД

Теперь можно поговорить про абляционные импульсные плазменные двигатели (АИПД). Они подходят для применения в малых космических аппаратах, которые имеют неплохой спектр функциональных возможностей. Для его расширения просто необходим высокоэффективный малогабаритный агрегат, способный корректировать и поддерживать орбиту. АИПД – перспективный аппарат с рядом достоинств, к которым можно отнести:

  • Постоянную готовность к работе.
  • Впечатляющий ресурс.
  • Минимальную инерционность.
  • Возможность точно дозировать импульс.
  • Отсутствие импульса последействия.
  • Зависимость тяги от потребляемой мощности.

Импульсные плазменные двигатели данного типа изучены в деталях. Исследователи, конечно, сталкивались и с проблемами. В частности – с поддержанием длительной работы агрегата, препятствием для которого является науглероживание поверхности.

Ещё в рамках одного из исследований, посвящённого изучению АИПД-ИТ, было выяснено, что у этого агрегата основной разряд горит на выходе из канала. А это характерная черта для двигателей намного более внушительной энергии.

Пример установки АИПД - спутник Earth Observer 1. Но претендовать на двигатель коррекции МКА он не может, поскольку потребляет слишком много энергии (60 Вт). К тому же у него низкий суммарный импульс.

 квантовый вакуумный плазменный двигатель

Стационарный двигатель

Об этом изобретении тоже стоит сказать пару слов. Стационарный плазменный двигатель имеет особенность в виде малой вырабатываемой мощности и компактности.

Он может использоваться в космической технике как исполнительный орган электрореактивной установки. Или же в рамках научных исследований. С помощью данного изобретения вполне реально моделировать направленные плазменные потоки.

По сути, такой плазменный двигатель – это магнетрон, широко применяемый в промышленности. Он, в свою очередь, представляет собой технологическое устройство, с помощью которого тонкие плёнки материала наносятся на подложку катодным распылением мишени в плазме. Но не нужно путать данное устройство с вакуумными магнетронами. Они выполняют совершенно другую функцию – генерацию СВЧ-колебаний.

С 1995 года стационарные плазменные двигатели задействованы в системах коррекции серии связных геостационарных KA. Потом, начиная с 2003 г., данные устройства стали применять в зарубежных геостационарных спутниках. К началу 2012 года уже 352 двигателя было установлено на аппаратах, которые вышли в открытый космос.

стационарный плазменный двигатель

MPD-Thruster

Это ещё один концепт плазменного агрегата. С ним связано немало надежд на космические технологии.

В чём идея? Создаётся заряд плазмы между катодом и анодом, который способствует индуцированию кольцевого магнитного поля. В действие вступает сила Лоренца, при помощи которой поле воздействует на движущиеся заряды тока, вследствие чего определённая их часть отклоняется в продольном направлении. В результате возникает плазменный сгусток, истекающий «вправо». Именно он формирует тяговый толчок.

Данный двигатель осуществляет работу в импульсном режиме, поскольку кратковременные паузы между разрядами необходимы – так копится заряд на электродах.

Чем перспективен MPD-Thruster? Он работает без разделения разноименных зарядов. Так как они в зарядном токе двигаются встречно. Это значит, что и силы Лоренца имеют идентичное направление.

В теории у данного концепта очень выдающиеся показатели. Он может развивать впечатляющую тягу. Но и нюансы тоже есть. Магнитному полю не подвластен «разгон» электрических зарядов. Всё из-за того, что сила Лоренца оказывает воздействие, перпендикулярное их скорости. То есть не изменяет кинетические показатели. MPD-Thruster только немного изменяет направления, по которым следуют заряды – для того чтобы плазма вылетала наружу продольно.

В идеале ток между катодом и анодом должен быть в разы плотнее. Это обязательно для создания тяги. И требует больших затрат электрической энергии. Которая, впрочем, не уступает мощности плазменной струи.

Если удельный импульс составит 1000 километров в секунду, а тяга – 100 кг, то на потребление будут уходить сотни мегаватт. Которые генерировать в космосе практически невозможно. Даже если допустить такую вероятность, корабль с MPD-Thruster, имеющий нетто-массу в 100 тонн, разгонится до отметки в 10 000 км/сек. лишь за 317 лет! И это при запредельно астрономическом стартовом весе, составляющем 2,2 миллиона тонн.

При таких показателях даже невозможно представить расход газа в агрегате, пропускающем электронные заряды. И никаких подсчётов не нужно делать, дабы понять – никакие электроды не способны выдержать столь весомых химических и тепловых нагрузок.

плазменно ионный двигатель

Квантовый аппарат EmDrive

Это изобретение Роджера Шоера из Британии, над которым чуть ли не в открытую смеялось всё международное научное сообщество. Почему? Потому что его квантовый вакуумный плазменный двигатель считался невозможным. Ибо его принцип противоречит законам, которые являются фундаментом физики!

Но, как оказалось, этот плазменный космический двигатель работает, причём весьма успешно! Выяснить данный факт удалось в ходе испытаний NASA.

Агрегат прост по своей конструкции. Тяга создаётся посредством микроволновых колебаний вокруг вакуумного контейнера. А электроэнергия, необходимая для их выработки, добывается из солнечного света. Говоря простым языком – мотор не требует использования топлива и способен работать если не вечно, то как минимум до момента поломки.

Испытатели были в шоке. Двигатель тестировался учёным Гвидо Фетта и командой из NASA Eagleworks, которой руководил Гарольд Уайт – специалисты из космического центра им. Линдона Джонсона. После детального изучения изобретения была опубликована статья, в которой испытатели заверили читателей – аппарат работает и успешно создаёт тягу, пусть это и является необъяснимым противоречием закону о сохранении импульса.

И всё же учёные заявили, что данный агрегат предполагает взаимодействие с так называемым квантовым вакуумом виртуальной плазмы.

Проблема эффективного разделения зарядов

Многие физики пессимистично уверяют – она нерешаема. Есть передовые проекты, в рамках которых разрабатываются инновационные плазменные агрегаты с мощностью в 5 МВт и импульсом в 1000 км/сек., однако их тяга всё равно остаётся слишком маленькой для преодоления больших расстояний.

Разработчики понимают эту проблему и ищут другие подходы. Один из самых перспективных проектов в наше время – это VASIMR. Его удельный импульс равен 50 км/сек., а тяга составляет 6 ньютонов. Вот только VASIMR на самом деле плазменным агрегатом не является. Потому что он вырабатывает высокотемпературную плазму. Она берёт разгон в сопле Лаваля – без использования электроэнергии, только благодаря газодинамическим эффектам. А ускоряется плазма так же, как и газовая струя набирает скорость на выходе из привычного ракетного агрегата.

плазменный двигатель для космических кораблей

Заключение

В завершение хотелось бы сказать, что ни один плазменный двигатель для космических кораблей из существующих в наше время не способен доставить ракету даже к ближайшим звёздам. Это касается как экспериментально проверенных аппаратов, так и теоретически просчитанных.

Многие учёные приходят к пессимистичному заключению – разрыв между нашей планетой и звёздами фатально непреодолим. Даже до системы Альфа Центавра, некоторые компоненты которой видны невооружённым глазом с Земли, а ведь расстояние составляет 39,9 триллиона километров. Даже на космическом аппарате, способном передвигаться со скоростью света, преодоление данного расстояния составило бы около 4,2-4,3 лет.

Так что плазменные агрегаты звездолётов – это, скорей, из сферы научной фантастики. Но это ничуть не преуменьшает их значимость! Их используют в качестве маневровых, вспомогательных и корректирующих орбиты двигателей. Поэтому изобретение вполне оправдано.

А вот ядерный импульсный агрегат, который утилизирует энергию взрывов, имеет вероятный потенциал развития. Во всяком случае, как минимум в теории отправка автоматического зонда в ближайшую звёздную систему является возможной.