Электромагнитные двигатели: описание и принцип работы

0
0

Конструкции электромагнитных двигателей только получают известность, широко они не используются. По сей день тема вечного двигателя будоражит конструкторов во всём мире. Стоимость электроэнергии довольно низкая, если сравнивать с бензином или соляркой. Каждый человек желает иметь под рукой вечное устройство, которое будет работать, не требуя ухода и большого количества топлива. Двигатели с электромагнитными клапанами (внутреннего сгорания) работают более эффективно, но добиться высокого КПД и снизить расходы на энергоносители все равно не получается.

электромагнитные двигатели

В качестве основы для своих конструкций инженеры выбирают постоянные магниты. В них имеется огромная энергия, которой нужно только уметь воспользоваться. Двигатели, изготовленные по таким технологиям, довольно просты в производстве. Но вот выжать максимальное количество энергии вряд ли сможет каждый в домашних условиях. На то есть множество причин, главная – сложность конструкций.

Энергия постоянных магнитов

Каждый постоянный магнит обладает очень сильным полем, у которого высокая энергетика. Поэтому многие разработчики электромагнитных двигателей пытаются преобразовать магнитное поле в механическую энергию, заставляя непрерывно вращаться ротор. Для сравнения:

  1. Во время сгорания уголь способен выделить примерно 33 Дж/г энергии.
  2. У нефти этот показатель 44 Дж/г.
  3. У радиоактивного урана — 43 млрд Дж/г.

В теории постоянный магнит может выделить около 17 млрд Джоулей на каждый грамм (а это примерно треть от аналогичного параметра урана). Вот только коэффициент полезного действия у магнита не будет равен 100 %. Ресурс магнитов на основе феррита - не более 70 лет. Но это при том, что на него не воздействуют большие перепады температуры, физическая и магнитная нагрузки. Конечно, не заменит бензиновый агрегат V8 электромагнитный двигатель, но вот на легкой технике он может использоваться.

электромагнитный клапан остановки двигателя

Промышленностью на данный момент выпускаются магниты, которые изготавливаются из редких металлов. Они в десятки раз мощнее, нежели простые ферритовые. Следовательно, эффективность их использования намного выше. Если такой постоянный магнит потеряет свою силу, то его запросто можно заново зарядить. Для этого достаточно воздействовать на него магнитным полем с большой силой. Они могут применяться в двигателях с электромагнитными клапанами. В них отсутствует распределительный вал, его функции берет на себя электроника.

Патенты на электромагнитные машины

электромагнитный соленоидный двигатель

Многие инженеры уже запатентовали свои конструкции двигателей. Но вот только реализовать работоспособный вечный двигатель ещё никто не смог. Такие устройства ещё не освоены, редко внедряются в технику, встретить в продаже их вряд ли получится. Намного чаще используются электромагнитные клапаны (дизельные двигатели работают под управлением электроники стабильнее и способны выдать большую мощность). Некоторые конструкторы уверены, что до серийного выпуска не доводятся электромагнитные двигатели, потому что все разработки засекречиваются. И большинство проблем в таких двигателях до сих пор не решены полностью.

Краткий обзор известных конструкций

Среди большого количества конструкций магнитных двигателей можно выделить следующие:

  1. Двигатели магнитного типа Калинина. Конструкция полностью неработоспособна, так как не доведен до ума механизм пружинного компенсатора.
  2. Магнитно-механический мотор конструкции Дудышева. Если произвести грамотную доводку, то такие двигатели могут работать практически вечно.
  3. «Перендев» — электромагнитные моторы, выполненные по классической схеме. На роторе устанавливается компенсатор, но он не способен работать без коммутации при прохождении мёртвой точки. А чтобы ротор проходил мертвую точку удержания, можно выполнить коммутацию двумя вариантами — с помощью электромагнита и механического устройства. Такая конструкция не может претендовать на звание «вечный двигатель». Да и у простого асинхронного двигателя электромагнитный момент окажется значительно выше.
  4. Электромагнитные двигатели конструкции Минато. Выполненный по классической схеме, представляет собой обычный электромагнитный мотор, у которого очень высокий коэффициент полезного действия. С учётом того, что конструкция не может достичь КПД в 100 %, она не работает как «вечный двигатель».
  5. Моторы Джонсона являются аналогами «Перендев», но у них меньше энергетика.
  6. Мотор-генераторы Шкондина представляют собой конструкцию, которая работает при помощи силы магнитного отталкивания. Компенсаторы в моторах не используются. Не способны работать в режиме «вечного двигателя», коэффициент полезного действия не более 80 %. Конструкция очень сложная, так как в ней присутствуют коллектор и щеточный узел.
  7. Наиболее совершенным механизмом является мотор-генератор конструкции Адамса. Это очень известная конструкция, работает по такому же принципу, как и мотор Шкондина. Вот только в отличие от последнего, отталкивание происходит от торца электромагнита. Конструкция устройства намного проще, нежели у Шкондина. Коэффициент полезного действия может составлять 100 %, но в том случае, если производить коммутацию обмотки электромагнита при помощи короткого импульса с высокой интенсивностью от конденсатора. В режиме «вечного двигателя» работать не может.
  8. Электромагнитный двигатель обратимого типа. Магнитный ротор находится снаружи, внутри установлен статор из электромагнитов. Коэффициент полезного действия приближается к 100 %, так как магнитопровод разомкнут. Такой электромагнитный соленоидный двигатель способен работать в двух режимах – мотора и генератора.

Другие конструкции

двигатель с электромагнитными клапанами

Существует множество других конструкций, в том числе и работоспособных, но они построены по вышеприведенным схемам. Двигатель-генераторы электромагнитного типа получают огромную популярность среди энтузиастов, причём некоторые конструкции уже были внедрены в серийный выпуск. Но это, как правило, самые простые механизмы. На электровелосипедах в последнее время часто применяется мотор-колесо конструкции Шкондина. Но для нормальной работы любого электромагнитного мотора необходимо наличие источника энергии. Даже электромагнитный соленоидный двигатель не сможет работать без дополнительного питания.

Без аккумулятора обойтись не могут такие механизмы. Обязательно требуется запитать обмотку электромагнита для того, чтобы создать поле и раскрутить ротор до минимальной частоты. По сути, получается электромагнитный двигатель постоянного тока, который способен осуществлять рекуперацию энергии. Другими словами, мотор работает только при разгоне, а при торможении он переводится в режим генератора. Такими особенностями обладают любые электромобили, которые можно встретить в продаже. У некоторых попросту отсутствует система торможения как таковая, функции колодок выполняют двигатели, работающие в режиме генератора. Чем больше нагрузка на обмотке, тем сильнее будет сила противодействия.

Конструкция электромагнитного двигатель-генератора

v8 электромагнитный двигатель

Устройство состоит из таких узлов:

  1. Магнитный двигатель. На роторе находится постоянный магнит, а она статоре - электрический.
  2. Генератор электромеханического типа, расположенный на том же месте, что и двигатель.

Статорные электромагниты статического типа выполняются на магнитопроводе в форме кольца и вырезанными сегментами.

электромагнитный клапан останова двигателя

В конструкции также имеется индуктивная катушка и коммутатор, позволяющий осуществить в ней реверс тока. Постоянный магнит устанавливается на роторе. Обязательно должен быть двигатель с электромагнитной муфтой, с ее помощью ротор соединяется с валом генератора. Обязательно в конструкции должен быть автономный инвертор, который выполняет функцию простейшего регулятора.

Используется схема простейшего мостового автономного инвертора, соединяется он с выходом индуктивной обмотки электрического магнита. Вход питания подключается к аккумуляторной батарее. Электромагнитный генератор соединяется либо с обмоткой, либо же при помощи выпрямителя с аккумуляторной батареей.

Электронный коммутатор мостового типа

электромагнитный момент асинхронного двигателя

Самая простая конструкция электронного коммутатора выполняется на четырех силовых ключах. В каждом плече мостовой схемы присутствует по два мощных транзистора, столько же электронных ключей с односторонней проводимостью. Напротив ротора магнитного двигателя размещается два датчика, которые контролируют положение постоянного магнита на нем. Располагаются они как можно ближе от ротора. Функции этого датчика выполняет простейший прибор, который способен работать под воздействием магнитного поля — геркон.

Датчики, считывающие положение постоянного магнита на роторе, размещаются следующим образом:

  1. Первый находится у торца соленоида.
  2. Второй расположен со сдвигом в 90 градусов.

Выходы датчиков подключаются к логическому устройству, которое усиливает сигнал, а затем подает его на входы управления полупроводниковых транзисторов. С помощью подобных цепей работает и электромагнитный клапан остановки двигателя внутреннего сгорания.

электромагнитный клапан дизельных двигателях

На обмотках электрического генератора установлена нагрузка. В цепях питания катушки и коммутатора есть элементы, предназначенные для управления и защиты. При помощи автоматического переключателя можно произвести отключение аккумуляторной батареи, чтобы вся машина перешла на питание от электрического генератора (автономный режим).

Особенности конструкции магнитного двигателя

двигатель с электромагнитной муфтой

Если сравнивать с аналогичными устройствами, то вышеприведенная конструкция имеет следующие особенности:

  1. Используются очень экономичные электромагниты.
  2. На роторе располагается постоянный магнит, который вращается внутри дугового электромагнита.

В зазорах электромагнита постоянно изменяется полярность. Ротор изготавливается из немагнитных материалов, причём желательно, чтобы он был тяжёлым. Он выполняет функцию инерционного маховика. А вот в конструкции электромагнитного клапана остановки двигателя необходимо использовать сердечник из магнитных материалов.

Расчет электромагнита

работа электромагнитного двигателя

Чтобы провести примерный расчёт электрического магнита, необходимо задать тяговое усилие, которое требуется для мотора. Допустим, требуется произвести расчёт электрического магнита с тяговым усилием 100 Н (10 кг). Теперь после этого можно рассчитать параметры конструкции электромагнита, если зазор его составляет 10-20 мм. Тяговая сила, которая развивается электромагнитом, считается так:

  1. Перемножаются индукция в воздушном зазоре и площадь полюса. Индукция измеряется в Теслах, площадь – в квадратных метрах.
  2. Полученное значение необходимо разделить на значение магнитной проницаемости воздуха. Оно равно 1,256 х 10^-6 Гн/м.

Если задать индукцию 1,1 Тл, то можно вычислить площадь сечения магнитопровода:

  1. Тяговая сила умножается на магнитную проницаемость воздуха.
  2. Полученное значение необходимо разделить на квадрат индукции в зазоре.

Для трансформаторной стали, которая используется в магнитопроводах, индукция в среднем равна 1,1 Тл. Используя кривую намагничивания низкоуглеродистой стали, можно определить среднее значение напряженности магнитного поля. Если правильно сконструировать электрический магнит, то вы достигнете максимальной силы потока. Причём электропотребление обмотки будет минимальным.

Параметры постоянных магнитов

двигатель с электромагнитным тормозом

Чтобы изготовить электромагнитный двигатель своими руками, потребуется подобрать все компоненты. И самое главное — это постоянные магниты. У них имеется три основных характеристики:

  1. Остаточная магнитная индукция, которая позволяет определить величину потока. В том случае, когда на генераторе установлены постоянно магниты с очень большой индукцией, пропорционально будет увеличиваться напряжение на выходе обмоток. Следовательно, повышается мощность генераторной установки.
  2. Энергетическое произведение позволяет «пробивать» потоком воздушные зазоры. Чем больше величина энергетического произведения, тем меньше размеры всей системы.
  3. Коэрцитивная сила определяет значение магнитного напряжения. При использовании в генераторах магнитов с большой коэрцитивной силой поле без труда преодолеет любой воздушный зазор. Если витков в статоре очень много, то без лишних энергозатрат будет поддерживаться ток.

Виды постоянных магнитов

Для остановы двигателя электромагнитный клапан необходимо запитывать от мощного источника. Либо же можно применять сильные магниты. Поэтому желательно такие конструкции применять на мощной технике. А чтобы самостоятельно изготовить мотор-генератор, желательно использовать ферритовые или неодимовые магниты. Характеристики постоянных магнитов:

  1. Феррит-бариевые: индукция в воздушном зазоре на уровне 0,2-0,4 Тл; энергетическое произведение 10-30 кДж/куб. м; коэрцитивная сила 130-200 кА/м. Стоимость от 100 до 400 руб. за килограмм. Рабочая температура не более 250 градусов.
  2. Феррит-стронциевые: индукция в воздушном зазоре на уровне 0,35-0,4 Тл; энергетическое произведение 20-30 кДж/куб. м; коэрцитивная сила 230-250 кА/м. Стоимость от 100 до 400 руб. за килограмм. Рабочая температура не более 250 градусов.
  3. Неодимовые магниты: индукция в воздушном зазоре на уровне 0,8-1,4 Тл; энергетическое произведение 200-400 кДж/куб. м; коэрцитивная сила 600-1200 кА/м. Стоимость от 2000 до 3000 руб. за килограмм. Рабочая температура не более 200 градусов.

Вдвое дешевле бариевые постоянные магниты, нежели неодимовые. Но габариты генераторов на таких магнитах намного больше. По этой причине лучше всего использовать в самодельных электромагнитных моторах неодимовые магниты. Двигатель с электромагнитным тормозом, выполненный из таких материалов, сможет намного больше восстанавливать энергии при остановке.

Шторочные двигатели

Генераторы, оснащенные электромагнитами переменного тока, могут быть выполнены и по другой схеме. Можно также с успехом использовать электрические магниты постоянного тока. Причём нет необходимости устанавливать коммутатор и устройство для переполюсовки торцов в зазорах с помощью реверса тока. Такими действиями можно существенно упростить всю силовую часть и управление магнитным двигателем.

электромагнитный двигатель своими руками

Но придётся установить магнитный экран, который будет коммутироваться механическим способом. Обязательно требуется синхронно экранировать магнитные полюса на статоре и роторе в нужный в момент времени. Мощность электромагнитного двигателя от этого не пострадает, так как потерь при механической регулировке практически не будет. Работа двигателя с механической регулировкой происходит таким же образом, как и с электронной.

Шторочный двигатель Дудышева

На статоре установлен неподвижный кольцевой электромагнит, на котором имеется обмотка. Между магнитопроводом и ротором присутствует небольшой зазор. На роторе располагается постоянный магнит и шторки. Это магнитные экраны, они расположены с внешней стороны и вращаются независимо от ротора. На валу двигателя находится маховик и стартер-генератор. На электромагните статора располагается обмотка, которая соединяется посредством выпрямителя со стартер-генератором.

электромагнитный двигатель постоянного тока

Запуск такой конструкции осуществляется при помощи стартера, который находится на одном валу с мотором. После того, как запустится электродвигатель и он выйдет в нормальный режим работы, стартер начинает работать как генератор, то есть, вырабатывает напряжение. Шторки перемещаются на диске при повороте ротора максимально синхронно. При этом обеспечивается циклическая экранировка одноименных полюсов электромагнита.

Другими словами, обязательно нужно обеспечить при помощи различных технических средств такое перемещение диска со шторками и ротора, чтобы экраны располагались между одноименными полюсами неподвижного электрического магнита и постоянного на роторе. Возможности работы электрического магнитного двигателя в установившемся режиме:

  1. Когда ротор вращается принудительно, имеется возможность вырабатывать электроэнергию при помощи генератора.
  2. Если присоединить к нему индуктивную обмотку, то машина переводится в режим мотор-генератора. При этом передается вращение на совмещённый вал, работа электромагнитного двигателя происходит в двух режимах.

Простейшая конструкция мотор-генератора

электромагнитный момент двигателя

Момент электромагнитного двигателя может быть практически любым. Если реализовать простейшую конструкцию с малой мощностью, то сделать это можно с помощью обычного электрического счётчика. Правда, такие конструкции уже не используются для контроля потребления электроэнергии. Но найти их можно. Дисковый электросчетчик — это уже готовый механизм двигателя. В нём имеется:

  1. Электрический магнит с индуктивной обмоткой.
  2. Ротор из немагнитного материала.

Отсутствуют только постоянные магниты на роторе и коммутатор. Зазор между нижней и верхней частями магнитопровода сравнительно маленький. Благодаря этому получается повысить момент вращения. Но обязательно необходимо, чтобы зазор в магнитопроводе был достаточным, чтобы в нём проходил ротор с постоянными магнитами.

электромагнитная мощность двигателя

Желательно применять от 3 до 6 мощных магнитов, высота должна быть не больше 10 мм. Крепить на роторе необходимо их как можно жестче, используя специальные обоймы из немагнитных материалов. Коммутатор выполняется в виде инвертора мостового типа, соединяется с выходом обмотки электрического магнита. При запуске двигателя питание производится от аккумулятора.