Правило смещения при радиоактивном распаде

0
0

Правило смещения при радиоактивном распаде в радиохимии и ядерной физике, которое также известно под названием закона Содди-Фаянса, представляет собой правило, определяющее превращение одного элемента в другой во время радиоактивного распада. Оно было изложено в 1913 году независимо двумя учеными: английским радиохимиком Фредериком Содди и американским физико-химиком с польскими корнями Казимиром Фаянсом.

Достижения Фредерика Содди в области радиоактивности

Содди и Резерфорд

Содди вместе с Резерфордом стоит у истоков открытия радиоактивных атомных превращений. Так, в 1903 году Содди открыл, что радий в процессе своего распада излучает ядра гелия. Также этот ученый показал, что атомы одного и того же химического элемента могут иметь различные массы, что привело его к разработке концепции изотопов. Содди установил правила смещения химических элементов во время альфа- и бета- радиоактивных распадов, что стало важным шагом в понимании взаимосвязи между семействами радиоактивных элементов.

В 1921 году Фредерик Содди был удостоен Нобелевской премии по химии за важные открытия в области физики радиоактивных элементов и за исследования природы изотопов.

Работы Казимира Фаянса

Казимир Фаянс

Этот ученый провел важные исследования радиоактивности различных изотопов и разработал квантовую теорию электронной структуры молекул. В 1913 году одновременно с Фредериком Содди и независимо от него Фаянс открыл правила смещения, которые регулируют преобразование одних химических элементов в другие в процессе радиоактивных распадов. Также Фаянс открыл новый химический элемент - протактиний.

Понятие радиоактивности

Химический элемент протактиний

Перед тем как рассмотреть законы радиоактивного распада и правила смещения, необходимо разобраться с понятием радиоактивности. В физике под этим словом понимают способность ядер некоторых химических элементов испускать излучение, обладающее следующими свойствами:

  • способность проникать в человеческие ткани, оказывая разрушающее действие;
  • способность ионизировать газы;
  • стимуляция процесса флюоресценции;
  • прохождение через различные твердые и жидкие тела.

Благодаря этим способностям обычно это излучение называют ионизирующим. Природа радиоактивного излучения может быть либо электромагнитной, например, рентгеновские лучи или гамма-излучение, либо носить корпускулярный характер, испускание ядер гелия, протонов, электронов, позитронов и других элементарных частиц.

Таким образом, радиоактивность - это феномен, наблюдаемый у нестабильных ядер атомов, которые спонтанно способны превращаться в ядра более стабильных элементов. Говоря простыми словами, нестабильный атом испускает радиоактивное излучение, чтобы стать стабильным.

Нестабильные атомные изотопы

Нестабильные изотопы, то есть атомы одного и того же химического элемента, которые обладают различной атомной массой, находятся в возбужденном состоянии. Это говорит о том, что они обладают повышенной энергией, которую стремятся отдать, чтобы перейти в равновесное состояние. Учитывая, что все энергии атома квантованы, то есть имеют дискретные значения, то и сам радиоактивный распад происходит за счет потери конкретной кинетической энергии.

Химический элемент уран-238

Нестабильный изотоп в процессе радиоактивного распада переходит в более стабильный, но это не значит, что новое образованное ядро не будет обладать радиоактивностью, оно также может распадаться. Ярким примером этого процесса является ядро урана-238, которое за несколько столетий испытывает ряд распадов, превращаясь, в конце концов, в атом свинца. Отметим, что в зависимости от вида изотопа, он спонтанно может распадаться, как через миллионные доли секунды, так и через миллиарды лет, например, тот же уран-238 имеет период полураспада (время, за которое половина ядер распадается) равный 4,468 млрд лет, в то же время для изотопа калия-35 этот период равен 178 миллисекундам.

Различные виды радиоактивности

Применение того или иного правила радиоактивного смещения зависит от типа радиоактивного распада, который испытывает конкретный элемент. В общем случае выделяют следующие виды радиоактивности:

  • альфа-распад;
  • бета-распад;
  • гамма-распад;
  • распад с испусканием свободных нейтронов.

Все эти виды радиоактивного распада (за исключением испускания свободных нейтронов) установил новозеландский физик Эрнест Резерфорд еще в начале XX века.

Виды радиоактивного излучения

Корпускулярные виды распада

Альфа-распад связан с испусканием ядер гелия-4, то есть речь идет о корпускулярном излучении, частицы которого состоят из двух протонов и двух нейтронов. Это означает, что масса этих частиц равна 4 в атомных единицах массы (АЕМ), а электрический заряд равен +2 в единицах элементарного электрического заряда (1 элементарный заряд в системе СИ равен 1,602*1019 Кл). Испущенное ядро гелия до распада входило в состав ядра нестабильного изотопа.

Природа бета-распада заключается в испускании электронов, которые имеют массу 1/1800 АЕМ и заряд -1. Ввиду отрицательного заряда электрона, этот распад называют бета-отрицательным. В отличие от альфа-частицы электрон не существовал до распада в атомном ядре, а образовался в результате превращения в протон нейтрона. Последний остался в ядре после распада, а электрон покинул атомное ядро.

Впоследствии был обнаружен бета-положительный распад, который заключается в испускании позитрона-античастицы электрона. Радиоактивный позитрон образуется в результате обратной реакции, чем электрон, то есть протон в ядре превращается в нейтрон, теряя при этом свой положительный заряд.

В ряде радиоактивных превращений одного ядра в другое происходит испускание нейтронов различных энергий. Как и протон, нейтрон имеет массу 1 АЕМ (если быть более точным, то нейтрон на 0,137% тяжелее протона) и обладает нулевым электрическим зарядом. Таким образом, при данном типе распада ядро-родитель теряет только 1 единицу своей массы.

Гамма-распад

Гамма-распад в отличие от предыдущих видов распада имеет электромагнитную природу, то есть это излучение подобно рентгеновскому или видимому свету, однако, длина волны гамма-излучения намного меньше, чем у любой другой электромагнитной волны. Гамма-лучи не обладают массой покоя и зарядом. По сути, гамма-лучи - это лишняя энергия, которая существовала до распада в ядре атома, обуславливая его нестабильность. Химический элемент сохраняет свое положение в периодической таблице Д. И. Менделеева при гамма-распаде.

Гамма-распад

Правила радиоактивного смещения

Пользуясь этими правилами, можно легко определить, какой химический элемент должен получиться из данного родительского изотопа при определенном виде радиоактивного распада. Поясним эти правила смещения в физике:

  • При альфа-распаде, поскольку ядро теряет 4 АЕМ массы и +2 единицы заряда, образуется химический элемент, стоящий на 2 позиции левее в периодической системе Д. И. Менделеева. Например, 92U238 = 90Th234, здесь нижний индекс - заряд, верхний - масса ядра.
  • В случае бета-отрицательного распада заряд материнского ядра увеличивается на 1 единицу, при этом масса остается неизменной (масса электрона, испускаемого в процессе этого распада, составляет всего 0,06% от массы протона). В данном случае правило смещения равновесия гласит, что должен образоваться изотоп химического элемента, стоящий на одну клетку правее от материнского элемента в таблице Д. И. Менделеева. Например, 82Pb212 = 83Bi212.
  • Правило смещения при бета-положительном распаде (излучение позитрона) гласит, что в результате этого процесса образуется химический элемент, который на 1 позицию стоит левее от материнского элемента, и имеет ту же массу ядра, что и он. Например, 7N13 = 6C13.