Период колебаний: опыты, формулы, задачи

0
0

Что такое период колебаний? Что это за величина, какой физический смысл она имеет и как ее рассчитать? В этой статье мы разберемся с этими вопросами, рассмотрим различные формулы, по которым можно рассчитать период колебаний, а также выясним, какая связь имеется между такими физическими величинами, как период и частота колебаний тела/системы.

Определение и физический смысл

период свободных колебаний формула

Периодом колебаний называется такой промежуток времени, при котором тело или система совершают одно колебание (обязательно полное). Параллельно можно отметить параметр, при выполнении которого колебание может считаться полным. В роли такого условия выступает возвращение тела в его первоначальное состояние (к первоначальной координате). Очень хорошо проводится аналогия с периодом функции. Ошибочно, кстати, думать, что она имеет место исключительно в обыкновенной и высшей математике. Как известно, эти две науки неразрывно связаны. И с периодом функций можно столкнуться не только при решении тригонометрических уравнений, но и в различных разделах физики, а именно речь идет о механике, оптике и прочих. При переносе периода колебаний из математики в физику под ним нужно понимать просто физическую величину (а не функцию), которая имеет прямую зависимость от проходящего времени.

Какие бывают колебания?

Колебания подразделяются на гармонические и ангармонические, а также на периодические и непериодические. Логично было бы предположить, что в случае гармонических колебаний они совершаются согласно некоторой гармонической функции. Это может быть как синус, так и косинус. При этом в деле могут оказаться и коэффициенты сжатия-растяжения и увеличения-уменьшения. Также колебания бывают затухающими. То есть, когда на систему действует определенная сила, которая постепенно “тормозит” сами колебания. При этом период становится меньше, в то время как частота колебаний неизменно увеличивается. Очень хорошо демонстрирует такую вот физическую аксиому простейший опыт с использованием маятника. Он может быть пружинного вида, а также математического. Это неважно. Кстати, период колебаний в таких системах будет определяться разными формулами. Но об этом чуточку позже. Сейчас же приведем примеры.

Опыт с маятниками

Взять первым можно любой маятник, разницы никакой не будет. Законы физики на то и законы физики, что они соблюдаются в любом случае. Но почему-то больше по душе математический маятник. Если кто-то не знает, что он собой представляет: это шарик на нерастяжимой нити, который крепится к горизонтальной планке, прикрепленной к ножкам (или элементам, которые играют их роль – держать систему в равновесном состоянии). Шарик лучше всего брать из металла, чтобы опыт был нагляднее.

период колебаний

Итак, если вывести такую систему из равновесия, приложить к шару какую-то силу (проще говоря, толкнуть его), то шарик начнет раскачиваться на нити, следуя определенной траектории. Со временем можно заметить, что траектория, по которой проходит шар, сокращается. В то же время шарик начинает все быстрее сновать туда-сюда. Это говорит о том, что частота колебаний увеличивается. А вот время, за которое шарик возвращается в начальное положение, уменьшается. А ведь время одного полного колебания, как мы выяснили ранее, и называется периодом. Если одна величина уменьшается, а другая увеличивается, то говорят об обратной пропорциональности. Вот мы и добрались до первого момента, на основании которого строятся формулы для определения периода колебаний. Если же мы возьмем для проведения пружинный маятник, то там закон будет наблюдаться немного в другом виде. Для того чтобы он был наиболее наглядно представлен, приведем систему в движение в вертикальной плоскости. Чтобы было понятнее, сначала стоило сказать, что собой представляет пружинный маятник. Из названия понятно, что в его конструкции должна присутствовать пружина. И это действительно так. Опять же таки, у нас есть горизонтальная плоскость на опорах, к которой подвешивается пружина определенной длины и жесткости. К ней, в свою очередь, подвешивается грузик. Это может быть цилиндр, куб или другая фигурка. Это может быть даже какой-то сторонний предмет. В любом случае, при выведении системы из положения равновесия, она начнет совершать затухающие колебания. Наиболее четко просматривается увеличение частоты именно в вертикальной плоскости, без всякого отклонения. На этом с опытами можно закончить.

период и частота колебаний

Итак, в их ходе мы выяснили, что период и частота колебаний это две физические величины, которые имеют обратную зависимость.

Обозначение величин и размерности

Обычно период колебаний обозначается латинской буквой T. Гораздо реже он может обозначаться по-другому. Частота же обозначается буквой µ (“Мю”). Как мы говорили в самом начале, период это не что иное, как время, за которое в системе происходит полное колебание. Тогда размерностью периода будет секунда. А так как период и частота обратно пропорциональны, то размерностью частоты будет единица, деленная на секунду. В записи задач все будет выглядеть таким образом: T (с), µ (1/с).

Формула для математического маятника. Задача №1

Как и в случае с опытами, я решил первым делом разобраться с маятником математическим. Подробно вдаваться в вывод формулы мы не будем, поскольку такая задача поставлена изначально не была. Да и вывод сам по себе громоздкий. Но вот с самими формулами ознакомимся, выясним, что за величины в них входят. Итак, формула периода колебаний для математического маятника имеет следующий вид:

период свободных колебаний формула

Где l – длина нити, п = 3,14, а g – ускорение свободного падения (9,8 м/с^2). Никаких затруднений формула вызывать не должна. Поэтому без дополнительных вопросов перейдем сразу к решению задачи на определение периода колебания математического маятника. Металлический шар массой 10 грамм подвешен на нерастяжимой нити длиной 20 сантиметров. Рассчитайте период колебания системы, приняв ее за математический маятник. Решение очень простое. Как и во всех задачах по физике, необходимо максимально упростить ее за счет отброса ненужных слов. Они включаются в контекст для того чтобы запутать решающего, но на самом деле никакого веса абсолютно не имеют. В большинстве случаев, разумеется. Здесь можно исключить момент с “нерастяжимой нитью”. Это словосочетание не должно вводить в ступор. А так как маятник у нас математический, масса груза нас интересовать не должна. То есть слова о 10 граммах тоже просто призваны запутать ученика. Но мы ведь знаем, что в формуле масса отсутствует, поэтому со спокойной совестью можем приступать к решению. Итак, берем формулу и просто подставляем в нее величины, поскольку определить необходимо период системы. Поскольку дополнительных условий не было задано, округлять значения будем до 3-его знака после запятой, как и принято. Перемножив и поделив величины, получим, что период колебаний равен 0,886 секунд. Задача решена.

Формула для пружинного маятника. Задача №2

Формулы маятников имеют общую часть, а именно 2п. Эта величина присутствует сразу в двух формулах, но разнятся они подкоренным выражением. Если в задаче, касающейся периода пружинного маятника, указана масса груза, то избежать вычислений с ее применение невозможно, как это было в случае с математическим маятником. Но пугаться не стоит. Вот так выглядит формула периода для пружинного маятника:

период колебаний

В ней m – масса подвешенного к пружине груза, k – коэффициент жесткости пружины. В задаче значение коэффициента может быть приведено. Но если в формуле математического маятника особо не разгуляешься – все-таки 2 величины из 4 являются константами – то тут добавляется 3 параметр, который может изменяться. И на выходе мы имеем 3 переменных: период (частота) колебаний, коэффициент жесткости пружины, масса подвешенного груза. Задача может быть сориентирована на нахождение любого из этих параметров. Вновь искать период было бы слишком легко, поэтому мы немного изменим условие. Найдите коэффициент жесткости пружины, если время полного колебания составляет 4 секунды, а масса груза пружинного маятника равна 200 граммам.

Для решения любой физической задачи хорошо бы сначала сделать рисунок и написать формулы. Они здесь – половина дела. Записав формулу, необходимо выразить коэффициент жесткости. Он у нас находится под корнем, поэтому обе части уравнения возведем в квадрат. Чтобы избавиться от дроби, умножим части на k. Теперь оставим в левой части уравнения только коэффициент, то есть разделим части на T^2. В принципе, задачку можно было бы еще немного усложнить, задав не период в числах, а частоту. В любом случае, при подсчетах и округлениях (мы условились округлять до 3-его знака после запятой), получится, что k = 0, 157 Н/м.

Период свободных колебаний. Формула периода свободных колебаний

период и частота колебаний

Под формулой периода свободных колебаний понимают те формулы, которые мы разобрали в двух ранее приведенных задачах. Составляют также уравнение свободных колебаний, но там речь идет уже о смещениях и координатах, а этот вопрос относится уже к другой статье.

Советы для решения задач, связанных с периодом

1) Прежде чем браться за задачу, запишите формулу, которая с ней связана.

2) Простейшие задачи не требуют рисунков, но в исключительных случаях их нужно будет сделать.

3) Старайтесь избавляться от корней и знаменателей, если это возможно. Записанное в строчку уравнение, не имеющее знаменателя, решать гораздо удобнее и проще.