Как найти сторону треугольника - в помощь школьнику
Есть несколько способов решения этой геометрической задачи. Они описаны в статье.
При помощи сторон и углов
Итак, первый способ нахождения сторон треугольника - это по нескольким сторонам и углу между ними (и аналогично с углами и одной прилежащей стороной). Данный способ подойдет для старшей школы, так как здесь используются такие понятия, как синус, косинус, квадрат числа и корень. Итак, как найти сторону треугольника, который является произвольным? Для начала нарисуем эту самую фигуру. Теперь давайте обзовем элементы нашей фигуры. Стороны будут a, b и c. Угол, находящийся напротив стороны a, у нас будет "альфа", напротив b -"бета", напротив c - "гамма".

Равнобедренный треугольник
Что такое равнобедренный треугольник? Сам по себе он имеет две одинаковые стороны и так называемое основание. Стороны-близнецы обозначим буквой a, основание - b. Стало быть, раз у треугольника есть два "бедра" одной величины, то и углы на "фундаменте" тоже будут одинаковыми. Их назовем "альфа". Для того чтобы ответить, как найти сторону равнобедренного треугольника, необходимо ввести еще одну величину - угол, образованный между равными "бедрами".
Так как он располагается напротив b, то назвать его лучше всего "бета". Здесь при поиске неизвестных сторон можно пользоваться несколькими формулами. Давайте же посмотрим, какими именно. Первые две - это те, по которым можно вычислить длину стороны основания равнобедренного треугольника. Основана она на знаниях ученика о синусах и косинусах.


Прямоугольный треугольник
Наверное, каждый школьник, который только начал изучение геометрии, знает, что такое прямоугольный треугольник. С первого взгляда в данной фигуре нет ничего особенного, сложного и непонятного. Но вот когда "теряются" данные о той или иной стороне сего геометрического объекта, начинаются проблемы. Дело все в том, что вопрос: "Как найти сторону прямоугольного треугольника?" - затрагивает не только понятия синуса и косинуса, а еще и тангенсов углов. Таким образом, вычисления становятся намного сложнее и больше. Итак, сначала обозначим два катета нарисованного прямоугольного треугольника через a и b. Углы, лежащие напротив этих сторон, как и принято было прежде, назовем "альфа" и "бета" соответственно. Нашей гипотенузой будет служить сторона c. Угол, лежащий против него, нам не понадобится - он будет прямым. Вариантов вычислений тут несколько. Первый называется классическим. Для катета a формулы выглядит как: a=c*cos"бета"=c*sin"альфа"=b*tg"альфа".

Итоги
Итак, сегодня мы разобрались, как найти сторону треугольника, и выучили много новых формул. Для того чтобы лучше их запомнить, запишите их на какую-нибудь бумажку, по которой потом будет проще учить все наизусть. Не стоит пугаться "страшных" цифр и больших вычислений. Все проще, чем кажется.
Похожие статьи
- Находим периметр треугольника различными способами
- Что такое синус и косинус в тригонометрии?
- Как находить синус угла
- Как узнать площадь равностороннего треугольника: основные формулы
- Как вычислить площадь треугольника
- Прямоугольная трапеция: все формулы и примеры задач
- Прямоугольный треугольник и его свойства