Основные понятия теории вероятностей и математической статистики

0
0

Математика включает целое множество областей, одной из которых, наряду с алгеброй и геометрией, является теория вероятности. Существуют термины, являющиеся общими для всех этих направлений, но, помимо них, есть и специфические, свойственные только одной конкретной «нише» слова, формулы, теоремы.

Словосочетание «теория вероятности» вызывает у неподготовленного студента панику. Действительно, воображение рисует картины, где фигурируют страшные объемные формулы, а решение одной задачи занимает целую тетрадь. Однако на практике всё вовсе не так ужасно: достаточно один раз понять смысл некоторых терминов и вникнуть в суть несколько своеобразной логики рассуждений, чтобы перестать бояться заданий раз и навсегда. В связи с этим мы рассмотрим основные понятия теории вероятностей и математической статистики – молодой, но крайне интересной области знаний.

Для чего учить понятия

Функция языка – передавать информацию от одного человека к другому так, чтобы он её понял, осознал и смог использовать. Каждое математическое понятие можно объяснить простыми словами, но в этом случае акт обмена данными занимал бы значительно больше времени. Представьте, что вместо слова «гипотенуза» вам всегда бы пришлось говорить «самая длинная сторона прямоугольного треугольника» - это крайне неудобно и долго.

основное понятие теории вероятности
Потому люди и придумывают новые термины для тех или иных явлений, процессов. Основные понятия теории вероятностей – событие, вероятность события и т. д. – появились точно так же. А значит, чтобы использовать формулы, решать задачи и применять навыки в жизни, необходимо не просто запомнить новые слова, но и понять, что означает каждое из них. Чем более глубоко вы осознаете их, вникаете в смысл, тем шире становятся рамки ваших возможностей, и тем полнее вы воспринимаете окружающий мир.

В чем смысл предмета

Познакомимся с основными понятиями теории вероятностей. Классическое определение вероятности звучит следующим образом: это отношение устраивающих исследователя исходов к общему числу возможных. Приведем простой пример: когда человек бросает кубик, тот может выпасть любой из шести сторон кверху. Таким образом, общее число исходов - шесть. Вероятность же того, что выпадет случайно выбранная сторона – 1/6.

Умение предсказывать появление того или иного результата является крайне важным для самых разных специалистов. Сколько бракованных деталей ожидается в партии? От этого зависит, сколько нужно произвести. Какова вероятность, что лекарство поможет побороть болезнь? Такая информация и вовсе является жизненно важной. Но не будем тратить время на дополнительные примеры и приступим к изучению новой для нас области.

Первое знакомство

Рассмотрим основные понятия теории вероятности и их использование. В праве, естественных науках, экономике представленные ниже формулы и термины используются повсеместно, поскольку имеют непосредственное отношение в статистике и погрешности измерений. Более подробное изучение этого вопроса откроет вам и новые формулы, полезные для более точных и сложных вычислений, однако начнем с простого.

Одним из самых базовых и основных понятий теории вероятностей и математической статистики является случайное событие. Объясним понятными словами: из всех возможных исходов эксперимента в результате наблюдается лишь один. Даже если вероятность наступления этого события значительно выше, чем другого, оно будет случайным, так как теоретически итог мог быть и иным.

основные понятия теории вероятностей и математической статистики
Если мы провели серию экспериментов и получили некоторое количество исходов, то вероятность каждого из них рассчитывается по формуле: P(A) = m/n. Здесь m – это то, сколько раз в серии испытаний мы наблюдали появление интересующего нас результата. В свою очередь n – это общее количество проведенных экспериментов. Если мы бросили монетку 10 раз и 5 раз получили «решку», то m=5, а n=10.

Виды событий

Случается, что некоторый исход гарантированно наблюдается в каждом испытании – такое событие будет называться достоверным. Если оно не будет происходить никогда, то будет называться невозможным. Впрочем, такие события не используются в условиях задач по теории вероятности. Основные понятия, которые знать гораздо важнее – это совместные и несовместные события.

Случается, что при проведении эксперимента одновременно происходит сразу два события. Например, мы бросаем два кубика – в данном случае то, что на одном выпало «шесть», не гарантирует того, что на втором не выпадет другая цифра. Такие события будут называться совместными.

основные понятия теории вероятностей и задачи на нахождение вероятностей
Если мы кидаем один кубик, то две цифры одновременно выпасть не смогут никогда. В данном случае исходы в виде выпавшей «единицы», «двойки» и т. д. будут рассматриваться как несовместные события. Очень важно различать, какие исходы имеют место в каждом конкретном случае – от этого зависит, какие формулы применять в задаче на нахождение вероятностей. Основные понятия теории вероятностей мы продолжим изучать спустя несколько абзацев, когда рассмотрим особенности сложения и умножения. Ведь без них ни одну задачу решить не удастся.

Сумма и произведение

Допустим, вы с другом бросаете кубик, и у него выпало «четыре». Вам, чтобы победить, необходимо получить «пять» или «шесть». В этом случае вероятности будут суммироваться: поскольку шансы выпадения обоих чисел равны 1/6, ответ будет выглядеть как 1/6 + 1/6 = 1/3.

А теперь представьте, что вы бросаете кубик по два раза, и ваш друг получил 11 очков. Теперь вам необходимо, чтобы два раза подряд выпало «шесть». События независимы друг от друга, поэтому вероятности понадобится перемножить: 1/6 * 1/6 = 1/36.

Среди основных понятий и теорем теории вероятностей следует обратить внимание на сумму вероятностей совместных событий, т. е. тех, которые могут происходить одновременно. Формула сложения в этом случае будет выглядеть так: P(A+B) = P(A) + P(B) – P(AB).

Комбинаторика

Очень часто нам требуется найти все возможные сочетания некоторых параметров объекта или вычислить количество каких-либо комбинаций (например, при подборе шифра). В этом нам поможет комбинаторика, теснейшим образом связанная с теорией вероятности. Основные понятия здесь включают некоторые новые слова, а ряд формул из этой темы вам наверняка пригодится.

основные понятия теории вероятностей испытание событие
Допустим, у вас есть три цифры: 1, 2, 3. Вам надо, используя их, написать все возможные трёхзначные числа. Сколько их будет? Ответ: n! (восклицательный знак означает факториал). Комбинации из некоторого количества разных элементов (цифр, букв и проч.), отличающиеся только порядком их расположения, называются перестановками.

Однако гораздо чаще мы сталкиваемся с такой ситуаций: имеется 10 цифр (от нуля до девяти), из которых составляется пароль или код. Предположим, его длина – 4 символа. Как рассчитать общее количество возможных кодов? Для этого существует специальная формула: (n!)/(n – m)!

Учитывая предложенное выше условие задачи, n=10, m=4. Далее требуются только простые математические расчёты. Кстати, называться такие комбинации будут размещением.

Наконец, существует понятие сочетаний – это последовательности, отличающиеся друг от друга хотя бы одним элементом. Высчитывается их число по формуле: (n!) / (m!(n-m)!).

Математическое ожидание

Важным понятием, с которым сталкивается студент уже на первых занятиях по предмету, является математическое ожидание. Оно представляет собой сумму всех возможных результирующих значений, помноженных на их вероятности. По сути, это среднее число, которое мы можем предсказать в качестве результата испытания. Например, есть три значения, для которых в скобках указаны вероятности: 0 (0,2); 1 (0,5); 2 (0,3). Посчитаем математическое ожидание: M(X) = 0*0,2 + 1*0,5 + 2*0,3 = 1,1. Таким образом, из предложенного выражения можно увидеть, что данная величина является постоянной и не зависит от исхода испытания.

Это понятие используется во многих формулах, и вы неоднократно с ним столкнетесь в дальнейшем. Работать с ним несложно: математическое ожидание суммы равно сумме мат. ожиданий – M(X+Y) = M(X) + M(Y). То же касается и произведения: M(XY) = M(X) * M(Y).

Дисперсия

Должно быть, со школьного курса физики вы помните, что дисперсия – это рассеяние. Каково её место среди основных понятий теории вероятностей?

Посмотрите на два примера. В одном случае нам дано: 10(0,2); 20(0,6); 30(0,2). В другом – 0(0,2); 20(0,6); 40(0,2). Математическое ожидание в обоих случаях будет одинаковое, как же тогда сравнивать эти ситуации? Ведь мы видим невооруженным глазом, что разброс значений во втором случае значительно больше.

Для этого и было введено понятие дисперсии. Чтобы получить её, необходимо рассчитать математическое ожидание от суммы разностей каждой случайной величины и математического ожидания. Возьмём числа из первого примера, записанного в предыдущем абзаце.

основные понятия теории вероятности и математической статистики кратко
Сперва рассчитаем математическое ожидание: M(X) = 10*0,2 + 20*0,6 + 30*0,2 = 20. Тогда значение дисперсии: D(X) = 40.

Ещё одним из основных понятий статистики и теории вероятности является среднее квадратичное отклонение. Рассчитать его очень просто: нужно лишь взять корень квадратный из дисперсии.

Здесь же можно отметить такой простой термин, как размах. Это значение, обозначающее разницу между максимальным и минимальным значением в выборке.

Статистика

Некоторые базовые школьные понятия используются в науке очень часто. Двумя из них являются среднее арифметическое и медиана. Наверняка вы помните, как найти их значения. Но на всякий случай напомним: среднее арифметическое – это сумма всех значений, деленная на их количество. Если значений 10, то мы их складываем и делим на 10.

Медиана – это центральное значение в ряду всех возможных. Если мы имеем нечетное количество величин, то мы выписываем их в порядке возрастания и выбираем то, которое оказалось в середине. Если же у нас четное число значений, мы берем два центральных и делим на два.

Ещё два значения, располагающиеся между медианой и двумя крайними - максимальным и минимальным - значениями множества, именуются квартилями. Вычисляются они таким же образом – при нечетном количестве элементов берется число, располагающееся в середине ряда, а при четном – половина суммы двух центральных элементов.

Существует и специальный график, на котором можно увидеть все значения выборки, её размах, медиану, межквартальный интервал, а также выбросы – значения, не укладывающиеся в статистическую погрешность. Получающееся изображение носит весьма специфическое (и даже нематематическое) название – «ящик с усами».

Распределение

Распределение также относится к основным понятиям теории вероятности и математической статистики. Кратко говоря, оно представляет собой обобщенную информацию обо всех случайных величинах, которые мы можем увидеть в результате испытания. Главным параметром здесь будет вероятность появления каждого конкретного значения.

основные понятия теории вероятности и их использование в праве
Нормальное распределение – это такое, которое имеет один центральный пик, в котором находится величина, встречающееся наиболее часто. От него дугами расходятся всё менее и менее вероятные исходы. В целом график со стороны похож на «горку». В дальнейшем вы узнаете, что с данным видом распределения теснейшим образом связана основополагающая для теории вероятности центральная предельная теорема. В ней описываются важные для рассматриваемого нами ответвления математики закономерности, очень полезные при разнообразных расчётах.

Но вернемся к теме. Существует ещё два вида распределений: ассиметричное и мультимодальное. Первое выглядит как половинка «нормального» графика, т. е. дуга спускается лишь в одну сторону от пиковой величины. Наконец, мультимодальное распределение – это такое, у которого существует несколько «верхних» значений. График, таким образом, то опускается, то поднимается. Наиболее частотное значение в любом распределении называется модой. Это также одно из основных понятий теории вероятностей и математической статистики.

Гауссово распределение

Гауссово, или нормальное, распределение – такое, в котором отклонение наблюдений от среднего подчиняется определенному закону.

Кратко говоря, основной разброс значений выборки экспоненциально стремится к моде – самому частотному из них. Ещё говорить точнее, то 99,6 % всех величин располагается в пределах трёх стандартных отклонений (помните, мы рассматривали это понятие выше?).

Гауссово распределение – одно из основных понятий теории вероятности. При помощи него можно понять, входит ли элемент по тем или иным параметрам в разряд «типичных» - так оценивается рост и вес человека в соответствии с возрастом, уровень интеллектуального развития, психологическое состояние и многое другое.

Как применить

Интересно, что «скучные» математические данные можно использовать с пользой для себя. Например, один молодой человек применил теорию вероятности и статистику, чтобы выиграть в рулетку несколько миллионов долларов. Правда, перед этим пришлось подготовиться - в течение нескольких месяцев записывать результаты игр в различных казино.

основные понятия и теоремы теории вероятностей

После проведения анализа он выяснил, что один из столов незначительно наклонен, а значит, ряд значений появляется статистически значимо чаще других. Немного расчётов, терпения – и вот владельцы заведения ломают головы, думая, как человеку может так повезти.

Есть целое множество повседневных бытовых задач, которые невозможно решить без обращения к статистике. Например, как определить, сколько магазину заказывать одежды разных размеров: S, M, L, XL? Для этого необходимо проанализировать, кто чаще покупает одежду в городе, в районе, в близлежащих магазинах. Если такую информацию не получить, владелец рискует потерять много денег.

Заключение

Мы рассмотрели целое множество основных понятий теории вероятностей: испытание, событие, перестановки и размещения, математическое ожидание и дисперсия, мода и нормальное распределение… Кроме того, мы рассмотрели ряд формул, на изучение которых в высшем учебном заведении отводится больше месяца занятий.

Не забывайте: математика необходима при изучении экономики, естественных наук, информационных технологий, инженерных специальностей. Статистику как одну из её областей здесь также нельзя обходить стороной.

Теперь дело за малым: практикуйтесь, решайте задачи и примеры. Даже основные понятия и определения теории вероятности забудутся, если не уделять время повторению. Кроме того, последующие формулы в значительной степени будут опираться на те, которые были нами рассмотрены. Поэтому постарайтесь их запомнить, тем более что их не так и много.