Что такое алюминий: формула, реакции, свойства и применение

0
0

Алюминий – элемент третьего периода периодической таблицы Менделеева с атомным номером 13. По распространенности является первым среди металлов и третьим среди химических элементов земной коры (после кислорода и кремния). Давайте узнаем более детально, что такое алюминий и какими свойствами он обладает.

Общая характеристика

Итак, что такое алюминий? Прежде всего, это легкий парамагнитный металл бело-серебристого цвета, который очень податлив для обработки (литье, формовка, механическая обработка и прочее). Химическая формула алюминия известна всем из школьного курса химии – Al. Он обладает высокой электро- и теплопроводностью, а также устойчивостью к коррозионным процессам. Последнее свойство обуславливается способностью алюминия к быстрому образованию оксидных пленок, которые защищают его поверхность.

алюминий Что такое

Историческая справка

Мировая общественность узнала, что такое алюминий, в 1825 году, благодаря датскому физику Гансу Эрстеду. Ученый провел взаимодействие амальгамы калия с хлоридом алюминия, с последующим извлечением ртути. Свое название химический элемент получил от латинского слова alumen, которое переводится как «квасцы».

До того как был открыт промышленный метод получения алюминия, данный металл ценился больше, чем золото. В 1889 году, желая почтить роскошным подарком Д.И. Менделеева, британцы вручили ему весы, сделанные из золота и алюминия.

Получение

Металл образует прочную связь с кислородом – оксид алюминия. По сравнению с другими известными металлами, его восстановление из руды более трудоемко. Причина тому кроется в высокой реакционной способности и высокой температуре плавления алюминия, а точнее его руд. Метод прямого восстановления углеродом не применяется, так как у этого металла восстановительная способность выше, нежели у углерода. Непрямое восстановление возможно. Оно предполагает получение промежуточного продукта Al4C3, подвергающегося при температуре порядка 2000°С разложению с образованием алюминия. Пока что это метод находится в разработке, но уже известно, что он будет требовать меньше энергозатрат, чем способ Холла - Эру.

Методика Холла - Эру, которая на сегодняшний день является самой широко используемой, была разработана в 1886 году параллельно двумя учеными – американцем Ч. Холлом и французом П. Эру. Ее суть заключается в растворении Al2O3 (оксида алюминия) в Na3AlF6 (расплав криолита) и последующем электролизе с применением анодных электродов (коксовых или графитовых). Так как этот метод является весьма затратным, он получил широкое применение лишь в двадцатом веке.

На производство одной тонны чернового алюминия уходит 1,92 т глинозема, 0,6 т электродов, 0,065 т криолита, 0,035 т фторида алюминия и порядка 61 ГДж электроэнергии.

Что касается лабораторного метода получения алюминия, то он был придуман в 1827 году Фридрихом Велером. Суть метода состоит в восстановлении безводного хлорида алюминия металлическим калием. Реакция проходит при нагреве, без доступа воздуха.

Оксид алюминия

Место в природе

Массовая концентрация данного вещества в земной коре оценивается в 7,45-8,14%. По этому показателю алюминий занимает первое место среди металлов и третье среди химических элементов в целом.

В природе, в связи с химической активностью металла, он встречается в основном в виде соединений. Основные минералы алюминия: бокситы, корунд, нефелины, глиноземы, алуниты, полевые шпаты, берилл, каолинит и хризоберилл. В жерлах вулканов, в которых созданы специфические восстановительные условия, были найдены малые количества самородного металла.

В природных водах алюминий представлен в виде малотоксичных соединений, к примеру фторида. На вид катиона или аниона влияет главным образом кислотность среды. В пресной воде концентрация раствора алюминия может составлять от 0,001 до 10 мг/л, а в соленой – порядка 0,01 мг/л.

В составе природного алюминия преобладает стабильный изотоп 27Al и наблюдаются ничтожные следы 26Al.

Физические свойства

Основные физические свойства материала:

  1. Плотность – 2712 кг/м3.
  2. Температура кипения – 2500°С.
  3. Температура плавления – 660°С.
  4. Удельная теплоемкость – 897 Дж/кг*K.
  5. Твёрдость по Бринеллю – от 24 до 32 кгс/мм².
  6. Пластичность чистого материала – 50%.
  7. Модуль Юнга – 70 Гпа.
  8. Электропроводность – 37*106 См/м.
  9. Теплопроводность – 203,5 Вт/(м*К).

Алюминий может образовывать сплавы практически со всеми металлами. Наибольшее распространение получили дюралюминий (сплав с медью и магнием) и силумин (сплав с кремнием).

Получение алюминия

Химические свойства

В нормальных условиях данный металл покрыт тонкой, но очень прочной оксидной пленкой, что обуславливает его стойкость к воздействию стандартных окислителей: воды, кислорода, а также азотной и серной кислот. Вместе с тем, алюминий реагирует с соляной кислотой. Благодаря этим свойствам, металл не подвержен коррозии и очень востребован в промышленности.

При разрушении пленки алюминий может выступить в роли активного металла-восстановителя. Чтобы избежать образования пленки, к нему добавляют галлий, олово или индий.

Рассмотрим основные уравнения алюминия.

С простыми веществами этот металл образует следующие соединения:

  1. С кислородом – оксид. 4Al+3O2=2Al2O3.
  2. С галогенами (кроме фтора) – хлорид, иодид и бромид. 2Al+3Hal2=2AlHal3 (Hal = Cl, Br, I).
  3. С фтором (при нагревании) – фторид. 2Al+3F2=2AlF3.
  4. С серой (при нагревании) – сульфид. 2Al+3S=Al2S3.
  5. С азотом (при нагревании) – нитрид. 2Al+N2=2AlN.
  6. С углеродом (при нагревании) – карбид. 4Al+3C=Al4C3.

Сульфиды и карбиды алюминия могут полностью гидролизоваться.

Реакции алюминия со сложными веществами выглядят таким образом:

  1. С водой – после удаления защитной пленки. 2Al+6H2O=2Al(OH)3+3H2.
  2. Со щелочами – образует алюминаты. 2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2.
  3. С соляной и разбавленной серной кислотами – растворяется в них. 2Al+6HCl=2AlCl3+3H2.
  4. С кислотами-окислителями, образующими растворимые соли – растворяется в них при нагревании. 8Al+15H2SO4=4Al2(SO4)3+3H2S+12H2O.
  5. С оксидами металлов – восстанавливает из них металлы (алюминотермия). 8Al+3Fe3O4=4Al2O3+9Fe.

Плавление алюминия

Производство

До конца 19-го века алюминий не производился в промышленных масштабах. Анри Сент-Клер Девиль, работу которого финансировал Наполеон Третий (он рассчитывал на использование материала для нужд армии), изобрел первый метод промышленного получения металла лишь в 1854 году. Суть метода состояла в вытеснении алюминия из двойного натриево-алюминиевого хлорида с помощью металлического натрия. В 1855 году был произведен первый слиток, масса которого составила порядка 7 кг. За последующие 36 лет по этому методу было произведено 200 тонн алюминия. Это при том, что уже 1856 году тот же ученый разработал новый способ, основанный на электролизе расплава указанного выше хлорида.

В 1885 году в городе Гмелингеме (Германия) был построен завод по производству алюминия по технологии Николая Бекетова. Это способ мало отличался от того, что разработал Девиль, но был несколько проще. Он базировался на взаимодействии между криолитом и магнием. За пять лет работы завод произвел 58 тонн алюминия – более 25% от мирового производства за 1854-1890 годы.

Метод Холла - Эру положил начало более технологичному и современному получению металла. С тех пор, с развитием электротехники, развивались и технологии производства алюминия. Заметный вклад в развитие этого направления внесли в том числе и русские ученые: Байер, Пеняков, Кузнецов, Жуковский, Яковкин и многие другие.

В России первое предприятие по производству алюминия было построено в городе Волхове в 1932 году. В 1939 металлургическая промышленность СССР производила практически 50 тысяч тонн этого металла в год.

Вторая мировая война стала стимулом для выпуска многих материалов, в том числе и алюминия. Так, к 1943 году мировое производство составило почти 2 млн тонн. С каждым годом, даже после окончания войны, этот показатель возрастал. В 1980-м году он составил 16 млн т., в 1990-м – 18 млн т., в 2008-м – уже около 40 млн т., а в 2016-м – почти 60 млн т.

Рейтинг стран, массово выпускающих алюминий, выглядит следующим образом:

  1. Китай.
  2. Россия.
  3. Канада.
  4. США.
  5. Австралия.

Мировой запас бокситов практически безграничен и несоизмерим с динамикой спроса. В будущем многие из линий по производству алюминия могут быть переориентированы на выпуск, к примеру, композитных материалов. Цена данного металла на торгах всемирных сырьевых бирж за последние десять лет колебалась в пределах 1250-3300 долларов за тонну.

Реакции с алюминием

Использование

Алюминий широко используется в качестве конструкционного материала. Его основные достоинства – легкость, коррозионная стойкость, податливость штамповке, высокая тепловодность и безвредность. Последние свойства сделали материал очень популярным в производстве кухонной утвари и пищевой пленки. Благодаря первым трем свойствам, алюминий стал основным сырьем космической и авиационной промышленности. Главным недостатком данного конструктивного материала является его малая прочность. Для упрочнения его обычно используют в сплавах с малыми количествами меди и магния (дюралюминий).

По электропроводности алюминий в 1,7 раз уступает меди, но за счет того, что его плотность в 3,3 раза меньше, для получения приблизительно равного сопротивления его требуется в два раза меньше по весу. Кроме того, алюминий примерно в 4 раза дешевле, чем медь. Этим обусловлено широкое применение данного материала в электротехнике (изготовление и экранирование проводников) и микроэлектронике (напыление проводников на поверхность микросхем). Главным недостатком алюминия как материала для электротехники является образование прочной диэлектрической пленки на его поверхности. Она затрудняет пайку и вызывает нагревание в местах соединений, что снижает качество контакта и надежность изоляции. Чтобы нивелировать данную особенность, используют алюминиевые проводники большого сечения.

Кроме того, алюминий используют в таких направлениях:

  1. Ювелирные изделия. Конечно, речь идет в основном о временах, когда алюминий был очень дорог. Сегодня его используют в бижутерии, а в Японии этот материал заменяет серебро в производстве традиционных украшений.
  2. Столовые приборы. В этом направлении алюминий использовался еще во времена Наполеона 3-го, однако и сейчас в заведениях общепита можно встретить столовые приборы из него.
  3. Стекловарение. В этой области используют фосфат, фторид и оксид алюминия.
  4. Пищевая промышленность. Данный металл зарегистрирован как пищевая добавка Е173.
  5. Военная промышленность. Благодаря дешевизне и небольшой массе алюминия, он используется в производстве пистолетов и автоматов.
  6. Ракетная техника. Алюминий и его соединения нашли применение в качестве ракетного горючего в 2-компонентных ракетных топливах.
  7. Энергетика. Алюминий используют как вторичный энергоноситель.

В качестве восстановителя алюминий используется в таких областях:

  1. Как компонент смесей для алюмотермии.
  2. Как восстановитель редких металлов из их оксидов и галогенидов.
  3. В пиротехнике.
  4. При анодной защите, в качестве протектора.

Формула алюминия

Использование сплавов

В качестве конструктивного материала часто используют не чистый алюминий, а сплавы на его основе.

Алюминиево-магниевые сплавы. Характеризуются сочетанием высокой пластичности, удовлетворительной прочности, коррозионной стойкости, хорошей свариваемости и высокой вибростойкости. Чаще всего в промышленности используют сплавы, в которых содержание магния колеблется в приделах 1-5%. Чем больше этот показатель, тем надежнее сплав. Каждый процент дает дополнительные 30 МПа к пределу прочности.

Сплавы, содержащие по массе до 3% магния, отличаются структурной стабильностью при нормальной и повышенной температуре, даже в нагартованном состоянии. С ростом содержания магния стабильность снижается. При увеличении его количества до 6% ухудшается коррозионная стойкость сплава. Поэтому для дальнейшего повышения прочностных характеристик, системы алюминий-магний легируют титаном, марганцем, хромом, ванадием или кремнием. Попадание меди и железа в такие сплавы нежелательно. Оно приводит к снижению свариваемости и коррозионной стойкости.

Алюминиево-марганцевые сплавы. Обладают высокими показателями прочности, пластичности, технологичности, коррозионной стойкости и свариваемости. В системах алюминий-марганец основными примесями являются железо и кремний. Эти элементы снижают степень растворимости марганца в алюминии. Чтобы получить мелкозернистую структуру, такие сплавы легируют титаном. Достаточное количество марганца обеспечивает стабильную структуру нагартованного металла, при любой температуре.

Алюминиево-медные сплавы. По своим механическим свойствам в термоупрочненном состоянии, эта система может обойти низкоуглеродистые стали. Такие сплавы очень технологичны. Их единственный недостаток – низкая коррозионная стойкость. С этой проблемой борются путем использования защитных покрытий.

В качестве легирующих добавок используют железо, магний, марганец и кремний. Сильнее всего на свойства сплава влияет магний, заметно повышая пределы текучести и прочности системы. Кремний повышает способность сплава к искусственному старению, а железо с никелем – его жаропрочность. Нагартовка этих систем после закалки приводит к ускорению искусственного старения, а также увеличивает их сопротивление коррозии и прочность.

Сплавы системы алюминий-цинк-марганец. Ценятся за высокие показатели прочности и технологичности. Высокое упрочнение достигается благодаря хорошей растворимости компонентов при повышенных температурах, которая резко уменьшается при охлаждении. Главным и очень существенным недостатком таких систем является их низкое сопротивление коррозии. Для повышения этого показателя применяют легирование медью. Также еще в 60-е годы прошлого века было выявлено, что присутствие лития в системах алюминий-цинк-марганец позволяет замедлить естественное и ускорить искусственное старение. Кроме того, литий уменьшает вес сплава и увеличивает его модуль прочности.

В промышленности используются также силумины (алюминиево-кремниевые сплавы), из которых отливают корпуса всяческих механизмов, и комплексные сплавы (авиали).

Соединения алюминия

Токсичность

Отвечая на вопрос о том, что такое алюминий, стоит упомянуть о токсичности этого металла. Несмотря на широкое распространение в природе, алюминий является мертвым веществом, то есть не используется живыми существами в метаболизме. Сам по себе металл имеет незначительное токсическое действие, однако многие из его неорганических соединений, растворимых в воде, могут оказать вредное воздействие на теплокровных жвачных и человека. Для человека токсическое действие оказывают такие дозы соединений металла (мг/кг массы тела):

  1. Ацетат – 0,2-0,4.
  2. Гидроксид – 3,7-7,3.
  3. Квасцы – 2,9 .

При попадании в организм с водой соединения алюминия действуют на нервную систему, что может привести к ее тяжелым расстройствам. Положительным является тот факт, что накоплению металла в организме препятствует механизм выведения. За сутки с мочой может быть выведено до 15 мг элемента. Таким образом, негативный эффект от соединений алюминия может коснуться только людей, страдающих нарушением выделительной функции почек.