Реактивное движение в технике и природе - примеры
Для большинства людей термин «реактивное движение» представляется в виде современного прогресса в науке и технике, особенно в области физики. Реактивное движение в технике ассоциируется у многих с космическими кораблями, спутниками и реактивной авиатехникой. Оказывается, явление реактивного движения существовало намного раньше, чем сам человек, и независимо от него. Люди лишь сумели понять, воспользоваться и развить то, что подчинено законам природы и мироздания.
Что такое реактивное движение?
На английском языке слово «реактивный» звучит как «jet». Под ним подразумевается движение тела, которое образуется в процессе отделения от него части с определенной скоростью. Проявляется сила, которая двигает тело в обратную сторону от направления движения, отделяя от него часть. Каждый раз, когда материя вырывается из предмета, а предмет при этом движется в обратном направлении, наблюдается реактивное движение. Для того чтобы поднимать предметы в воздух, инженеры должны спроектировать мощную реактивную установку. Выпуская струи пламени, двигатели ракеты поднимают ее на орбиту Земли. Иногда ракеты запускают спутники и космические зонды.
Что касается авиалайнеров и военных самолетов, то принцип их работы чем-то напоминает взлет ракеты: физическое тело реагирует на выбрасываемую мощную струю газа, в результате чего оно движется в противоположную сторону. Это и есть основной принцип работы реактивных самолетов.
Законы Ньютона в реактивном движении
Инженеры основывают свои разработки на принципах устройства мироздания, впервые подробно описанных в работах выдающегося британского ученого Исаака Ньютона, жившего в конце 17 столетия. Законы Ньютона описывают механизмы гравитации и рассказывают нам о том, что происходит, когда предметы движутся. Они особенно четко объясняют движение тел в пространстве.
Второй закон Ньютона определяет, что сила движущегося предмета зависит от того, сколько материи он вмещает, иными словами, его массы и изменения скорости движения (ускорения). Значит, чтобы создать мощную ракету, необходимо, чтобы она постоянно выпускала большое количество высокоскоростной энергии. Третий закон Ньютона говорит о том, что на каждое действие будет равная по силе, но противоположная реакция – противодействие. Реактивные двигатели в природе и технике подчиняются этим законам. В случае с ракетой сила действия – материя, которая вылетает из выхлопной трубы. Противодействием является толчок ракеты вперед. Именно сила выбросов из нее толкает ракету. В космосе, где ракета практически не имеет веса, даже незначительный толчок от ракетных двигателей способен заставить большой корабль быстро лететь вперед.
Техника, использующая реактивное движение
Физика реактивного движения состоит в том, что ускорение или торможение тела происходит без влияния окружающих тел. Процесс происходит вследствие отделения части системы.
Примеры реактивного движения в технике – это:
- явление отдачи от выстрела;
- взрывы;
- удары во время аварий;
- отдача при использовании мощного брандспойта;
- катер с водометным двигателем;
- реактивный самолет и ракета.
Тела создают закрытую систему, если они взаимодействуют лишь друг с другом. Такое взаимодействие может привести к изменению механического состояния тел, образующих систему.
В чем заключается действие закона сохранения импульса?
Впервые этот закон был оглашен французским философом и физиком Р. Декартом. При взаимодействии двух или больше тел образовывается между ними замкнутая система. Любое тело при движении обладает своим импульсом. Это масса тела, умноженная на его скорость. Общий импульс системы равен векторной сумме импульсов тел, находящихся в ней. Импульс любого из тел внутри системы меняется вследствие их взаимного влияния. Общий импульс тел, находящихся в замкнутой системе, остается неизменным при различных перемещениях и взаимодействиях тел. В этом состоит закон сохранения импульса.
Примерами действия этого закона могут быть любые столкновения тел (бильярдных шаров, автомобилей, элементарных частиц), а также разрывы тел и стрельба. При выстреле из оружия происходит отдача: снаряд мчится вперед, а само оружие отталкивается назад. Из-за чего это происходит? Пуля и оружие формируют между собой замкнутую систему, где работает закон сохранения импульса. При стрельбе импульсы самого оружия и пули меняются. Но суммарный импульс оружия и находящейся в нем пули перед выстрелом будет равен суммарному импульсу откатывающегося оружия и выпущенной пули после стрельбы. Если бы пуля и ружье имели одинаковую массу, они бы разлетелись в противоположные стороны с одинаковой скоростью.
Закон сохранения импульса имеет широкое практическое применение. Он позволяет объяснить реактивное движение, благодаря которому достигаются наивысшие скорости.
Реактивное движение в физике
Самым ярким образцом закона сохранения импульса служит реактивное движение, осуществляемое ракетой. Важнейшей частью двигателя выступает камера сгорания. В одной из ее стенок находится реактивное сопло, приспособленное для выпуска газа, возникающего при сжигании топлива. Под действием высокой температуры и давления газ на огромной скорости выходит из сопла двигателя. Перед стартом ракеты ее импульс относительно Земли равняется нулю. В момент запуска ракета также получает импульс, который равняется импульсу газа, но противоположный по направлению.
Пример физики реактивного движения можно увидеть везде. Во время празднования дня рождения воздушный шарик вполне может стать ракетой. Каким образом? Надуйте воздушный шар, зажимая открытое отверстие, чтобы воздух не выходил из него. Теперь отпустите его. Воздушный шар с огромной скоростью будет гонять по комнате, подгоняемый воздухом, вылетающим из него.
История реактивного движения
История реактивных двигателей началась еще за 120 лет до н.э., когда Герон Александрийский сконструировал первый реактивный двигатель – эолипил. В металлический шар наливают воду, которая нагревается огнем. Пар, который вырывается из этого шара, вращает ее. Это устройство показывает реактивное движение. Двигатель Герона жрецы успешно применяли для открывания и закрывания дверей храма. Модификация эолипила – Сегнерово колесо, которое эффективно используется в наше время для полива сельскохозяйственных угодий. В 16-м столетии Джовани Бранка представил миру первую паровую турбину, которая работала на принципе реактивного движения. Исаак Ньютон предложил один из первых проектов парового автомобиля.
Первые попытки использования реактивного движения в технике для перемещения по земле относят к 15-17 столетиям. Еще 1000 лет назад китайцы имели ракеты, которые использовали как военное оружие. Например, в 1232 году, согласно хронике, в войне с монголами они использовали стрелы, оборудованные ракетами.
Первые попытки построения реактивного самолета начались еще в 1910 году. За основу были взяты ракетные исследования прошлых веков, где подробно повествовалось об использовании пороховых ускорителей, способных существенно сократить длину форсажа и разбега. Главным конструктором стал румынский инженер Анри Коанда, построивший летательный аппарат, работающий на основе поршневого двигателя. Первооткрывателем реактивного движения в технике по праву можно назвать инженера из Англии – Фрэнка Уитла, который предложил первые идеи по созданию реактивного двигателя и получил на них свой патент в конце XIX века.
Первые реактивные двигатели
Впервые разработкой реактивного двигателя в России занялись в начале 20 столетия. Теорию движения реактивных аппаратов и ракетной техники, способных развить сверхзвуковую скорость, выдвинул известный российский ученый К. Э. Циолковский. Воплотить эту задумку в жизнь удалось талантливому конструктору А. М. Люльке. Именно он создал проект первого в СССР реактивного самолета, работающего с помощью реактивной турбины. Первые реактивные самолеты были созданы немецкими инженерами. Создание проектов и производство проводились тайно на замаскированных заводах. Гитлер со своей идеей стать мировым правителем, подключал лучших конструкторов Германии для производства мощнейшего оружия, в том числе и высокоскоростных самолетов. Наиболее успешным из них стал первый немецкий реактивный самолет «Мессершмитт-262». Этот летательный аппарат стал первым в мире, который успешно вынес все испытания, свободно поднялся в воздух и стал после этого выпускаться серийно.
Самолет обладал такими особенностями:
- Аппарат имел два турбореактивных двигателя.
- В носовой части располагался радиолокатор.
- Максимальная скорость самолета достигала 900 км/час.
Благодаря всем этим показателям и конструктивным особенностям первый реактивный летательный аппарат «Мессершмитт-262» был грозным средством борьбы против других самолетов.
Прототипы современных авиалайнеров
В послевоенное время российскими конструкторами были созданы реактивные самолеты, ставшие в дальнейшем прототипами современных авиалайнеров.
И-250, более известный как легендарный МиГ-13, – истребитель, над которым трудился А. И. Микоян. Первый полет был произведен весной 1945 года, на то время реактивный истребитель показал рекордную скорость, достигшую 820 км/час. Запущены были в производство реактивные самолеты МиГ-9 и Як-15 .
В апреле 1945 года впервые в небо поднялся реактивный самолет П. О. Сухого - Су-5, поднимающийся и летающий за счет воздушно-реактивного мотокомпрессорного и поршневого двигателя, расположенного в хвостовой части конструкции.
После окончания войны и капитуляции фашистской Германии Советскому Союзу в качестве трофеев достались немецкие самолеты с реактивными двигателями JUMO-004 и BMW-003.
Первые мировые прототипы
Разработкой, тестированием новых авиалайнеров и их производством занимались не только немецкие и советские конструкторы. Инженерами США, Италии, Японии, Великобритании также было создано немало успешных проектов, применяемых реактивное движение в технике. К числу первых разработок с различными типами двигателей можно отнести:
- Не-178 – немецкий самолет с турбореактивной силовой установкой, поднявшийся в воздух в августе 1939 года.
- GlosterE. 28/39 – летательный аппарат родом из Великобритании, с мотором турбореактивного типа, впервые поднялся в небо в 1941 году.
- Не-176 – истребитель, созданный в Германии с применением ракетного двигателя, осуществил свой первый полет в июле 1939 года.
- БИ-2 – первый советский летательный аппарат, который приводился в движение посредством ракетной силовой установки.
- CampiniN.1 – реактивный самолет, созданный в Италии, ставший первой попыткой итальянских конструкторов отойти от поршневого аналога.
- Yokosuka MXY7 Ohka («Ока») с мотором Tsu-11 – японский истребитель-бомбардировщик, так называемый одноразовый летательный аппарат с пилотом-камикадзе на борту.
Использование реактивного движения в технике послужило резким толчком для быстрого создания следующих реактивных летательных аппаратов и дальнейшего развития военного и гражданского самолетостроения.
- GlosterMeteor – воздушно-реактивный истребитель, изготовленный в Великобритании в 1943 году, сыграл существенную роль во Второй Мировой войне, а после ее завершения выполнял задачу перехватчика немецких ракет «Фау-1».
- LockheedF-80 – реактивный летательный аппарат, произведенный в США с применением мотора типа AllisonJ. Эти самолеты не раз участвовали в японско-корейской войне.
- B-45 Tornado – прототип современных американских бомбардировщиков B-52, созданный в 1947 году.
- МиГ-15 – последователь признанного реактивного истребителя МиГ-9, который активно участвовал в военном конфликте в Корее, был произведен в декабре 1947 г.
- Ту-144 – первый советский сверхзвуковой воздушно-реактивный пассажирский самолет.
Современные реактивные аппараты
С каждым годом авиалайнеры совершенствуются, ведь конструкторы со всего мира работают над тем, чтобы создавать аппараты нового поколения, способные летать со скоростью звука и на сверхзвуковых скоростях. Сейчас существуют лайнеры, способные вмещать большое количество пассажиров и грузов, обладающие огромными размерами и невообразимой скоростью свыше 3000 км/час, военная авиатехника, оборудованная современной боевой экипировкой.
Но среди этого многообразия имеются несколько конструкций реактивных самолетов-рекордсменов:
- Airbus A380 – самый вместительный аппарат, способный принять на своем борту 853 пассажира, что обеспечено двухпалубной конструкцией. Он же по совместительству один из роскошных и дорогостоящих авиалайнеров современности. Самый крупный пассажирский лайнер в воздухе.
- Boeing 747 – более 35 лет считался самым вместительным двухэтажным лайнером и мог перевозить 524 пассажира.
- АН-225 «Мрия» – грузовой летательный аппарат, который может похвастаться грузоподъемностью в 250 тонн.
- LockheedSR-71 – реактивный самолет, достигающий во время полета скорости 3529 км/час.
Авиационные исследования не стоят на месте, потому как реактивные самолеты – это основа стремительно развивающейся современной авиации. Сейчас проектируется несколько западных и российских пилотируемых, пассажирских, беспилотных авиалайнеров с реактивными двигателями, выпуск которых запланирован на ближайшие несколько лет.
К российским инновационным разработкам будущего можно отнести истребитель 5-го поколения ПАК ФА - Т-50, первые экземпляры которого поступят в войска предположительно в конце 2017 или начале 2018 года после испытания нового реактивного двигателя.
Природа - пример реактивного движения
Реактивный принцип движения изначально был подсказан самой природой. Его действием пользуются личинки некоторых видов стрекоз, медузы, многие моллюски – морские гребешки, каракатицы, осьминоги, кальмары. Они применяют своеобразный «принцип отталкивания». Каракатицы втягивают воду и выбрасывают ее так стремительно, что сами при этом делают рывок вперед. Кальмары, используя этот способ, могут достигать скорости до 70 километров в час. Именно поэтому такой способ передвижения позволил назвать кальмаров "биологическими ракетами". Инженеры уже изобрели двигатель, работающий по принципу движений кальмара. Одним из примеров применения реактивного движения в природе и технике является водомет.
Это устройство, которое обеспечивает движение с помощью силы воды, выбрасываемой под сильным напором. В устройство вода закачивается в камеру, а затем выпускается из нее через сопло, а судно движется в обратном выбросу струи направлении. Вода затягивается с помощью двигателя, работающего на дизеле или бензине.
Примеры реактивного движения предлагает нам и мир растений. Среди них попадаются виды, которые используют такое движение для распространения семян, например, бешеный огурец. Только внешне это растение подобно привычным для нас огурцам. А характеристику «бешеный» оно получило из-за странного способа размножения. Дозревая, плоды отскакивают от плодоножек. В итоге открывается отверстие, через которое огурец стреляет веществом, содержащим подходящие для прорастания семена, применяя реактивность. А сам огурец при этом отскакивает до двенадцати метров в сторону, обратную выстрелу.
Проявление в природе и технике реактивного движения подвластно одним и тем же законам мироздания. Человечество все больше использует эти законы для достижения своих целей не только в атмосфере Земли, но и на просторах космоса, и реактивное движение является этому ярким примером.
Похожие статьи
- Принцип работы реактивного двигателя. Описание и устройство
- Первый закон Ньютона и понятие инерции
- Импульс тела: определение и свойства
- Взаимодействие тел. Определение и виды
- Что такое турбина? Виды турбин. Устройство и принцип действия турбины
- Как реактивный двигатель завоевал господство в авиастроении
- Что такое ядерные двигатели?