Как найти среднюю скорость. Пошаговая инструкция

0
0

Есть средние величины, неправильное определение которых вошло в анекдот или в притчу. Любые неверно произведённые расчёты комментируются расхожей общепонятной ссылкой на такой заведомо абсурдный результат. У каждого, к примеру, вызовет улыбку саркастического понимания фраза "средняя температура по больнице". Однако те же знатоки нередко, не задумываясь, складывают скорости на отдельных отрезках пути и делят подсчитанную сумму на число этих участков, чтобы получить столь же бессмысленный ответ. Напомним из курса механики средней школы, как найти среднюю скорость правильным, а не абсурдным способом.

как найти среднюю скорость

Аналог "средней температуры" в механике

В каких случаях каверзно сформулированные условия задачи подталкивают нас к поспешному необдуманному ответу? Если говорится о "частях" пути, но не указывается их протяжённость, это настораживает даже мало искушённого в решении подобных примеров человека. А вот если в задаче прямо указывается на равные промежутки, например, "первую половину пути поезд следовал со скоростью...", или "первую треть пути пешеход прошагал соскоростью...", и далее подробно расписывается, как объёкт передвигался на оставшихся равных участках, то есть известно соотношение S1 = S2 = ... = Sn и точные значения скоростей v1, v2, ... vn, наше мышление нередко даёт непростительную осечку. Считается среднее арифметическое скоростей, то есть все известные значения v складываются и делятся на n. В итоге ответ получается неверный.

как найти среднюю скорость движения

Простые "формулы" расчёта величин при равномерном движении

И для всего пройденного пути, и для отдельных его участков в случае усреднения скорости справедливы соотношения, написанные для равномерного движения:

  • S = vt (1), "формула" пути;
  • t=S/v (2), "формула" расчёта времени движения;
  • v=S/t (3), "формула" определения средней скорости на участке пути S, пройденном за время t.

То есть для нахождения искомой величины v с использованием соотношения (3) нам нужно точно знать две другие. Именно решая вопрос, как найти среднюю скорость движения, мы прежде всего должны определить, каков весь пройденный путь S и каково всё время движения t.

как определить среднюю скорость

Математическое обнаружение скрытой ошибки

В решаемом нами примере пройденный телом (поездом или пешеходом) путь будет равен произведению nSn (так как мы n раз складываем равные участки пути, в приведённых примерах - половинки, n = 2, или трети, n = 3). О полном же времени движения нам ничего не известно. Как определить среднюю скорость, если знаменатель дроби (3) явно не задан? Воспользуемся соотношением (2), для каждого участка пути определим tn = Sn : vn. Сумму рассчитанных таким образом промежутков времени запишем под чертой дроби (3). Ясно, что, для того чтобы избавиться от знаков "+", нужно приводить все Sn : vn к общему знаменателю. В результате получается "двухэтажная дробь". Далее пользуемся правилом: знаменатель знаменателя идёт в числитель. В итоге, для задачи с поездом после сокращения на Sn имеем vср = nv1v2 : v1 + v2, n = 2 (4). Для случая с пешеходом вопрос -, как найти среднюю скорость, решается ещё сложнее: vср = nv1v2v3 : v1v2 + v2v3 + v3v1, n = 3 (5).

как найти среднюю скорость

Явное подтверждение ошибки "в числах"

Для того чтобы "на пальцах" подтвердить, что определение среднего арифметического - ошибочный путь при расчёте vср, конкретизируем пример, заменив абстрактные буквы числами. Для поезда возьмём скорости 40 км/ч и 60 км/ч (ошибочный ответ - 50 км/ч). Для пешехода - 5, 6 и 4 км/ч (среднее арифметическое - 5 км/ч). Нетрудно убедиться, подставив значения в соотношения (4) и (5), что верными ответами будут для локомотива 48 км/ч и для человека - 4,(864) км/ч (периодическая десятичная дробь, результат математически не слишком красивый).

как определить среднюю скорость

Когда среднее арифметическое "не подводит"

Если задача формулируется так: "За равные промежутки времени тело двигалось сначала со скоростью v1, затем v2, v3 и так далее", быстрый ответ на вопрос, как найти среднюю скорость, может быть найден неправильным способом. Предоставим читателю самостоятельно в этом убедиться, просуммировав в знаменателе равные промежутки времени и воспользовавшись в числителе vср соотношением (1). Это, пожалуй, единственный случай, когда ошибочный метод приводит к получению корректного результата. Но для гарантированно точных расчётов нужно пользоваться единственно правильным алгоритмом, неизменно обращаясь к дроби vср = S : t.

Алгоритм на все случаи жизни

Для того чтобы наверняка избежать ошибки, при решении вопроса, как найти среднюю скорость, достаточно запомнить и выполнить простую последовательность действий:

  • определить весь путь, просуммировав длины отдельных его участков;
  • установить всё время пути;
  • поделить первый результат на второй, неизвестные, не заданные в задаче величины при этом (при условии корректной формулировки условий) сокращаются.

В статье рассмотрены простейшие случаи, когда исходные данные приводятся для равных долей времени или равных участков пути. В общем случае соотношение хронологических промежутков либо пройденных телом расстояний может быть самым произвольным (но при этом математически определённым, выраженным конкретным целым числом или дробью). Правило обращения к соотношению vср = S : t абсолютно универсально и никогда не подводит, сколь бы сложные на первый взгляд алгебраические преобразования ни приходилось выполнять.

Напоследок отметим: для наблюдательных читателей не осталась незамеченной практическая значимость использования верного алгоритма. Правильно рассчитанная средняя скорость в приведённых примерах оказалась несколько ниже "средней температуры" на трассе. Поэтому ложный алгоритм для систем, фиксирующих превышения скорости, означал бы большее число ошибочных постановлений ГИБДД, высылаемых в "письмах счастья" водителям.