Равномерное движение. Формула равномерного движения.

0
0

Знакомство с классическим курсом физики начинается с простейших законов, которым подчиняются тела, перемещающиеся в пространстве. Прямолинейное равномерное движение – самый простой вид изменения положения тела в пространстве. Такое движение изучается в разделе кинематики.

Противник Аристотеля

Галилео Галилей остался в анналах истории как один из величайших естествоиспытателей времен позднего Ренессанса. Он отважился проверять утверждения Аристотеля – неслыханная по тем временам ересь, ибо учение этого древнего мудреца всячески поддерживалось церковью. Идея равномерного движения тогда не рассматривалась – тело или двигалось «вообще», или находилось в состоянии покоя. Понадобились многочисленные эксперименты для того, чтобы объяснить природу движения.

равномерное движение

Опыты Галилея

Классическим примером изучения движения стал известный эксперимент Галилея, когда он бросал различные тяжести со знаменитой Пизанской башни. В результате этого эксперимента выяснилось, что тела, имеющие разные массы, падают с одинаковой скоростью. Позднее эксперимент был продолжен в горизонтальной плоскости. Галилей предложил, что любой шар при отсутствии трения будет катиться с горки сколь угодно долго, при этом скорость его так же будет постоянной. Так, экспериментальным путем, Галилео Галилей открыл сущность первого закона Ньютона – при отсутствии внешних сил тело движется по прямой с постоянной скоростью. Прямолинейное равномерное движение – это и есть выражение первого закона Ньютона. В настоящее время различными видами движения занимается особый раздел физики - кинематика. В переводе с греческого данное наименование означает - учение о движении.

Новая система координат

Анализ равномерного движения был бы невозможен без создания нового принципа определения положения тел в пространстве. Сейчас мы называем его прямолинейной системой координат. Автор ее - известный философ и математик Рене Декарт, благодаря которому мы и называем систему координат декартовой. В таком виде очень удобно представлять траекторию движения тела в трехмерном пространстве и анализировать такое перемещения, привязывая положение тела к координатным осям. Прямоугольная система координат представляет собой две пересекающиеся под прямым углом прямые. Точка пересечения обычно принимается за начало отсчета измерений. Горизонтальная линия называется абсциссой, вертикальная – ординатой. Поскольку мы живем в трехмерном пространстве, к плоскостной системе координат добавляют и третью ось – ее называют аппликатой.

равномерное движение и система коррдинат

Определение скорости

Скорость невозможно измерить так, как мы измеряем расстояние и время. Это всегда величина производная, которая и записывается в виде соотношения. В самом общем виде скорость тела равна отношению пройденного расстояния к затраченному времени. Формула для скорости имеет вид:

равномерное движение

Где d- пройденное расстояние, t - затраченное время.

Направление напрямую влияет на векторное обозначение скорости (величина, определяющая время – скаляр, то есть оно направления не имеет).

Представление о равномерном движении

При равномерном движении тело движется вдоль прямой с постоянной скоростью. Поскольку скорость – это векторная величина, ее свойства описываются не только числом, но и направлением. Поэтому лучше уточнить определение, и сказать, что скорость равномерного прямолинейного движения постоянна по модулю и направлению. Чтобы описать прямолинейное равномерное движение, достаточно использовать декартову систему координат. В этом случае ось ОХ будет удобно проложить по направлению движения.

При равномерном перемещении положение тела в любой период времени определяется всего одной координатой - x. Направление движения тела и вектор скорости направлены вдоль оси х, при этом начало движения можно отсчитывать от нулевой отметки. Поэтому анализ перемещения тела в пространстве можно свести к проекции траектории движения на ось ОХ и описывать процесс алгебраическими уравнениями.

Равномерное движение с точки зрения алгебры

Допустим, что в определенный момент времени t1 тело находится в точке на оси абсцисс, координата которой равна х1. Черед некоторой промежуток времени тело изменит свое местоположение. Теперь координата его нахождения в пространстве будет равняться х2. Сведя рассмотрение движения тела к его расположению на оси координат, можно определить, что путь, который прошло тело, равен разнице начальной и конечной координаты. Алгебраически это записывается так: Δs = x2 – x1.

Величина перемещения

Величина, определяющая перемещение тела, может быть и больше, и меньше 0. Все зависит от того, в какую сторону относительно направления оси перемещалось тело. В физике можно записывать и отрицательное, и положительное перемещение – все зависит от выбранной для отсчета системы координат. Прямолинейное равномерное движение происходит со скоростью, которая описывается формулой:

равномерное движение формула

При этом скорость будет больше нуля, если тело движется вдоль оси ОХ от нуля; меньше нуля – если движение идет справа налево по оси абсцисс.

Такая краткая запись отражает суть равномерного прямолинейного движения – какими бы ни были изменения координат, скорость перемещения остается неизменной.

Галилею мы обязаны еще одной гениальной мыслью. Анализируя движение тела в мире, лишенном трения, ученый настаивал на том, что силы и скорости не зависят друг от друга. Эта блестящая догадка нашла свое отражение во всех существующих законах движения. Так, силы, действующие на тело, не зависят друг от друга и действуют так, будто других не существует. Применяя это правило к анализу движения тела, Галилей понял, что всю механику процесса можно разложить на силы, которые складываются геометрически (векторно) или линейно, если действуют в одном направлении. Приблизительно это будет выглядеть так:

равномерное движение это

При чем же здесь равномерное движение? Все очень просто. На очень малых промежутках пути скорость движения тела вполне можно считать равномерной, с прямолинейной траекторией. Таким образом, возникла блестящая возможность изучить более сложные движения, сводя их к простым. Так изучалось равномерное движение тела по окружности.

Равномерное движение по окружности

Равномерное и равноускоренное движение можно наблюдать в перемещении планет по своим орбитам. В этом случае планета участвует в двух видах независимых движений: она равномерно перемещается по окружности и в тоже время равноускоренно движется к Солнцу. Такое сложное движение объясняется силами, действующими на планеты. Схема воздействия планетарных сил представлена на рисунке:

равномерное и равноускоренное движение

Как можно видеть, планета участвует в двух разных движениях. Геометрическое сложение скоростей и даст нам скорость планеты на данном отрезке пути.

Равномерное движение – основа для дальнейшего изучения кинематики и физики в целом. Это элементарный процесс, к которому можно свести гораздо более сложные перемещения. Но в физике, как и везде, великое начинается с малого, и запуская в безвоздушное пространство космические корабли, управляя подводными лодками, следует не забывать о тех простейших опытах, на которых Галилей когда-то проверял свои открытия.