Микросхема 555: описание и практическое применение
Микросхемы 555 применяются довольно часто в радиолюбительской практике – они практичны, многофункциональны и очень просты в использовании. На таких микросхемах можно реализовать любую конструкцию – как простейшие триггеры Шмитта с парочкой дополнительных элементов, так и многоступенчатые кодовые замки.
NE555 была разработана уже довольно давно, даже в советских журналах «Радио», «Моделист-конструктор», на аналогах этой микросхемы можно было встретить немало самоделок. На сегодняшний день эта микросхема активно применяется в конструкциях со светодиодами.
Описание микросхемы
Это разработка компании из США Signetics. Именно ее специалисты смогли реализовать на практике работы Камензинда Ганса. Это, можно сказать, отец интегральной микросхемы – в тяжелых условиях высокой конкуренции инженерам удалось сделать продукт, который вышел на мировой рынок и завоевал широкую популярность.
В те годы у микросхемы 555 серии не было в мире аналогов – очень высокая плотность монтажа элементов в устройстве и крайне низкая себестоимость. Именно благодаря этим параметрам она заслужила высокую популярность среди конструкторов.
Отечественные аналоги
После началось массовое копирование этого радиоэлемента – советский аналог микросхемы носил название КР1006ВИ1. Между прочим, она во всех отношениях является уникальной разработкой, даже несмотря на то, что у нее много аналогов. Только у отечественных микросхем вход остановки приоритетнее, чем вход запуска. Ни в одной из зарубежных конструкций нет такой особенности. Но эту особенность обязательно нужно учитывать при проектировании схем, в которых оба входа активно используются.
Где применяется?
Но нужно заметить, что приоритеты входов не очень сильно влияют на работоспособность микросхемы. Это только мелкий нюанс, который нужно учитывать в редких случаях. Для снижения потребляемой мощности в середине 70-х был налажен выпуск КМОП-элементов. В СССР микросхемы на полевиках носили название КР1441ВИ1.
Генераторы на микросхеме 555 очень часто используются в конструкциях радиолюбителей. Несложно реализовать на этой микросхеме и реле времени, причем задержку можно установить от нескольких миллисекунд до часов. Существуют и более сложные элементы, в основе которых находится 555 схема – они содержат в себе устройства по предотвращению дребезжания контактов, ШИМ-контроллеры, восстановления сигнала цифрового типа.
Преимущества и недостатки микросхемы
Внутри таймера имеется встроенный делитель напряжения – именно он позволяет задать строго фиксированный нижний и верхний порог, при котором происходит срабатывание компараторов. Именно отсюда можно сделать вывод о главном недостатке – пороговыми значениями невозможно управлять, а из конструкции исключить делитель тоже нельзя, существенно сужается область практического применения микросхемы 555. Схемы мультивибраторов и одновибраторов построить можно, но более сложные конструкции не получится.
При изготовлении таймеров на биполярных транзисторах выскакивает один большой недостаток – выходной каскад переходит в противоположное состояние. И при каждом переключении появляется сквозной паразитный ток, пиковое значение его может быть около 400 мА. При этом существенно увеличиваются потери на тепло.
Как избавиться от недостатков?
Но избавиться от такой проблемы можно, достаточно установить полярный конденсатор не более 0,1 мкФ между управляющим выводом и минусом питания.
А чтобы существенно повысить помехоустойчивость, в цепи питания устанавливается неполярный конденсатор емкостью 1 мкФ. При практическом применении микросхем 555 важно учитывать, влияют ли на их работу пассивные элементы - резисторы и конденсаторы. Но нужно заметить одну особенность – при использовании таймеров на КМОП-элементах эти все недостатки просто уходят, нет необходимости применять дополнительные конденсаторы.
Основные параметры микросхем
Если вы решите изготовить таймер на микросхеме 555, то нужно знать ее основные особенности. Всего в приборе имеется пять узлов, их можно разглядеть на диаграмме. По входу находится делитель напряжение резистивного типа. С его помощью происходит формирование двух опорных напряжений, необходимых для работы компараторов. Выходы компараторов соединяются с RS-триггером и внешним контактом для сброса. И только после этого на усилительное устройство, где увеличивается значение сигнала.
Питание микросхем
В окончании находится транзистор, у которого коллектор открыт – он выполняет ряд функций, зависит все от того, какая конкретно задача перед ним стоит. Рекомендуется на интегральные микросхемы NE, SA, NA подавать напряжение питания в диапазоне 4,5-16 В. Только для в случае применения микросхем 555 с аббревиатурой SE допускается увеличение до 18 В.
Максимальный ток потребления при напряжении 4,5 В может достигать 10-15 мА, минимальное значение – 2-5 мА. Существуют микросхемы КМОП, у которых ток потребления не превышает 1 мА. У отечественных ИМС типа КР1006ВИ1 ток потребления не превышает 100 мА. Подробное описание микросхемы 555 и ее отечественных аналогов можно найти в даташитах.
Эксплуатация микросхемы
Условия эксплуатации зависят напрямую от того, какая фирма производит микросхему. В качестве примера можно привести два аналога – NE555 и SE555. У первой диапазон температур, в котором она нормально будет работать, находится в интервале 0-70 градусов. У второй же он намного шире – от -55 до +125 градусов. Поэтому такие параметры всегда нужно учитывать при проектировании устройств. Желательно ознакомиться со всеми типовыми значениями напряжений и токов на выводах Reset, TRIG, THRES, CONT. Для этого можно воспользоваться даташитом к конкретной модели – в ней вы найдете исчерпывающую информацию.
От этого зависит и практическое применение схемы. Радиолюбителями микросхема 555 используется довольно часто – в системах управления даже существуют задающие генераторы для радиопередатчиков на этом элементе. Преимущество его перед любым транзисторным или ламповым вариантом – невероятно высокая стабильность частоты. И нет надобности подбирать элементы с высокой стабильностью, устанавливать дополнительные устройства для выравнивания напряжения. Достаточно установить простую микросхему и усилить сигнал, который будет вырабатываться на выходе.
Назначение выводов ИМС
На микросхемах 555 серии присутствует всего восемь выводов, тип корпуса PDIP8, SOIC, TSSOP. Но во всех случаях назначение выводов одинаковое. УГО элемента – это прямоугольник, подписанный «G1» в случае генератора одиночных импульсов и «GN» для мультивибратора. Назначение выводов:
- GND – общий, по порядку он первый (если считать от ключа-метки). На этот вывод подается минус от источника питания.
- TRIG – вход запуска. Именно на этот вывод подается низкоуровневый импульс и он поступает на второй компаратор. В результате происходит запуск ИМС и появляется на выходе сигнал с высоким уровнем. Причем длительность сигнала зависит от значений С и R.
- OUT – выход, на котором появляется сигнал высокого и низкого уровней. Переключение между ними занимает не более 0,1 мкс.
- RESET – сброс. Этот вход обладает наивысшим приоритетом, он управляет таймером, причем не зависит это от того, есть ли напряжение на остальных ножках микросхемы. Чтобы разрешить запуск, нужно наличие напряжения свыше 0,7В. В том случае, если импульс меньше 0,7В, то работа микросхемы 555 запрещается.
- CTRL – контрольный вход, который соединяется с делителем напряжения. И если нет никаких внешних факторов, которые могут повлиять на работу, выдается на этом выходе напряжение 2/3 от питающего. При подаче управляющего сигнала на этот вход на выходе образуется модулированный импульс. В случае с простыми схемами этот выход соединяется к конденсатору.
- THR – остановка. Это вход 1-го компаратора, в случае появления на нем напряжения 2/3 от питающего происходит остановка работы триггера и таймер переводится в пониженный уровень. Но обязательное условие – на ножке TRIG не должно быть сигнала запуска (так как у него приоритет).
- DIS – разряд. Он соединяется непосредственно с транзистором, расположенным внутри микросхемы 555. У него коллектор общий. В цепи эмиттер-коллектор устанавливается конденсатор, который необходим для того чтобы задать время.
- VCC – подключение к плюсу источника питания.
Режим одновибратора
Всего существует три работы режима микросхемы NE555, один из них – одновибратор. Чтобы осуществить формирование импульсов, приходится применять конденсатор полярного типа и резистор.
Работа схемы происходит таким образом:
- Ко входу таймера прикладывается напряжение – низкоуровневый импульс.
- Происходит переключение режима работы микросхемы.
- На выводе «3» появляется сигнал с высоким уровнем.
Рассчитать время, в течение которого проходит сигнал, можно по простой формуле:
t=1,1*R*C.
По прошествии этого времени на выходе произойдет формирование низкоуровневого сигнала. В режиме мультивибратора выводы «4» и «8» соединяются. При разработке схем на основе одновибратора нужно учитывать такие нюансы:
- Напряжение питания не может влиять на время импульса. При увеличении напряжения скорость зарядки конденсатора, который задает время, больше. Следовательно, увеличивается амплитуда сигнала на выходе.
- Если произвести подачу дополнительного импульса на вход (уже после основного), то он не повлияет на работоспособность таймера до окончания времени t.
Чтобы повлиять на функционирование генератора, можно воспользоваться одним из способов:
- На вывод RESET подать низкоуровневый сигнал. При этом таймер вернется в состояние по умолчанию.
- Если на вход «2» идет низкоуровневый сигнал, то на выходе всегда будет высокий импульс.
При помощи одиночных импульсов, подаваемых на вход, и изменения параметров времязадающих компонентов, можно на выходе получить прямоугольный сигнал нужной длительности.
Схема мультивибратора
Изготовить металлоискатель на микросхеме 555 сможет любой начинающий радиолюбитель, но для этого нужно изучить особенности работы этого прибора. Мультивибратор – это специальный генератор, который вырабатывает с определенной периодичностью прямоугольные импульсы. Причем строго задается амплитуда, длительность и частота – зависят значения от того, какая задача стоит перед устройством.
Для формирования повторяющихся сигналов применяются резисторы и конденсаторы. Длительность сигнала t1, паузы t2, частоту f, и период T можно найти по следующим формулам:
- t1=ln2*(R1+R2)*C=0,693*(R1+R2)*C;
- t2=0,693*C*(R1+2*R2);
- T=0,693*C*(R1+2*R2);
- f=1/(0,693*C*(R1+2*R2)).
Исходя из этих выражений, можно увидеть, что пауза по длительности не должна быть больше времени сигнала. Другими словами, скважность не будет никогда больше 2. От этого напрямую зависит практическое применение микросхемы 555. Схемы различных устройств и конструкций строятся по даташитам - инструкциям. В них даны все возможные рекомендации для сборки приборов. Скважность можно найти по формуле S=T/t1. Чтобы увеличить этот показатель, необходимо добавить в схему полупроводниковый диод. Его катод соединяется с шестой ножкой, а анод с седьмой.
Если посмотреть в даташит, то в нем указывается обратная величина скважности – ее можно посчитать по формуле D=1/S. Измеряется она в процентах. Работу схемы мультивибратора можно описать следующим образом:
- При подаче питания конденсатор полностью разряжен.
- Таймер переводится в высокоуровневое состояние.
- Конденсатор накапливает заряд и на нем напряжение достигает максимума – 2/3 от питающего.
- Происходит переключение микросхемы и на выходе появляется низкоуровневый сигнал.
- Конденсатор разряжается в течение t1 до уровня 1/3 от питающего напряжения.
- Микросхема 555 переключается снова и на выходе образуется опять высокоуровневый сигнал.
Такой режим работы называется автоколебательным. На выходе постоянно изменяется величина сигнала, микросхема-таймер 555 равные промежутки времени находится в различных режимах.
Прецизионный триггер Шмитта
В таймерах типа NE555 и аналогичных имеется встроенный компаратор с двумя порогами – нижним и верхним. Кроме того, в нем присутствует специальный RS-триггер. Именно это позволяет реализовать конструкцию прецизионного триггера Шмитта. Напряжение, поступающее на вход, делится при помощи компаратора на три равные части. И как только достигает уровень значения порога, происходит переключение режима работы микросхемы. Гистерезис при этом увеличивается, его величина достигает значения 1/3 от напряжения питания. Используется прецизионный триггер в конструкциях систем с автоматическим регулированием.
Похожие статьи
- Пинпоинтер своими руками: схема, описание. Самодельный пинпоинтер
- Операционный усилитель LM358: схема включения, аналог, datasheet
- Индукционные нагреватели своими руками. Самодельный индукционный нагреватель: схема
- Коммутатор - это... Схема коммутатора. Как проверить коммутатор зажигания
- Asus X555LD: описание, характеристики и отзывы
- Сервопривод - что это такое? Устройство, подключение, принцип работы, назначение
- ШИМ-регулятор. Широтно-импульсная модуляция. Схема