Физические свойства алкенов, применение, способы получения
Органические соединения, содержащие пи-связь – это непредельные углеводороды. Они являются производными алканов, в молекулах которых произошло отщепление двух атомов водорода. Образовавшиеся свободные валентности формируют новый тип связи, которая располагается перпендикулярно плоскости молекулы. Так возникает новая группа соединений – алкены. Физические свойства, получение и применение веществ этого класса в быту и промышленности мы рассмотрим в этой статье.
Гомологический ряд этилена
Общая формула всех соединений, называемых алкенами, отражающая их качественный и количественный состав, – это CnH2n. Названия углеводородов по систематической номенклатуре имеют следующий вид: в термине соответствующего алкана изменяется суффикс с -ан на -ен, например: этан – этен, пропан - пропен и т. д. В некоторых источниках можно встретить еще одно название соединений этого класса – олефины. Далее мы изучим процесс образования двойной связи и физические свойства алкенов, а также определим их зависимость от строения молекулы.
Как образуется двойная связь
Электронную природу пи-связи на примере этилена можно представить следующим образом: атомы карбона в его молекуле находятся в форме sp2-гибридизации. В этом случае формируется сигма-связь. Еще две гибридные орбитали – по одной от атомов углерода, формируют простые сигма-связи с водородными атомами. Два оставшихся свободных гибридных облака атомов карбона перекрываются над и под плоскостью молекулы – образуется пи-связь. Именно она определяет физические и химические свойства алкенов, речь о которых пойдет далее.
Пространственная изомерия
Соединения, имеющие один и тот же количественный и качественный состав молекул, но различное пространственное строение, называются изомерами. Изомерия встречается в группе веществ, называемых органическими. На характеристику олефинов большое влияние оказывает явление оптической изомерии. Она выражается в том, что гомологи этилена, содержащие у каждого из двух углеродных атомов при двойной связи различные радикалы или заместители, могут встречаться в форме двух оптических изомеров. Они отличаются друг от друга положением заместителей в пространстве относительно плоскости двойной связи. Физические свойства алкенов в этом случае также будут разными. Например, это касается температур кипения и плавления веществ. Так, олефины неразветвленного строения углеродного скелета имеют более высокие температуры кипения, чем соединения-изомеры. Также температуры кипения цис-изомеров алкенов выше, чем транс-изомеров. В отношении температур плавления картина противоположная.
Сравнительная характеристика физических свойств этилена и его гомологов
Первые три представителя олефинов являются газообразными соединениями, затем, начиная с пентена C5H10 и до алкена с формулой C17H34, – жидкости, а далее идут твердые вещества. У гомологов этена прослеживается следующая тенденция: температуры кипения соединений снижаются. Например, у этилена этот показатель равен -169,1°C, а у пропилена -187,6°C. Зато температуры кипения с увеличением молекулярной массы повышаются. Так, у этилена она равна -103,7°C, а у пропена -47,7°C. Подводя итог сказанному, можно сделать вывод, звучащий кратко: физические свойства алкенов зависят от их молекулярной массы. С ее увеличением изменяется агрегатное состояние соединений в направлении: газ – жидкость – твердое вещество, а также снижается температура плавления, а температуры кипения возрастают.
Характеристика этена
Первый представитель гомологического ряда алкенов – это этилен. Он является газом, малорастворимым в воде, но хорошо растворяющимся в органических растворителях, не имеющим цвета. Молекулярная масса - 28, этен немного легче воздуха, имеет едва уловимый сладковатый запах. Он легко вступает в реакции с галогенами, водородом и галогеноводородами. Физические свойства алкенов и парафинов тем не менее достаточно близки. Например, агрегатное состояние, способность метана и этилена к жесткому окислению и т. д. Как же можно различить алкены? Как выявить непредельный характер олефина? Для этого существуют качественные реакции, на которых мы и остановимся подробнее. Напомним, какую особенность в строении молекулы имеют алкены. Физические и химические свойства этих веществ определяются наличием в их составе двойной связи. Чтобы доказать ее присутствие, пропускают газообразный углеводород через фиолетовый раствор перманганата калия или бромную воду. Если они обесцветились, значит, соединение содержит в составе молекул пи-связи. Этилен вступает в реакцию окисления и обесцвечивает растворы KMnO4 и Br2 .
Механизм реакций присоединения
Разрыв двойной связи заканчивается присоединением к свободным валентностям карбона атомов других химических элементов. Например, при взаимодействии этилена с водородом, называемом гидрогенизацией, получается этан. Необходим катализатор, например порошковидный никель, палладий или платина. Реакция с HCl заканчивается образованием хлорэтана. Алкены, содержащие более двух атомов углерода в составе своих молекул, проходят реакцию присоединения галогеноводородов с учетом правила В. Марковникова.
Как гомологи этена взаимодействуют с галогеноводородами
Если перед нами стоит задание "Охарактеризуйте физические свойства алкенов и их получение", нам нужно рассмотреть правило В. Марковникова более подробно. Практическим путем установлено, что гомологи этилена реагируют с хлороводородом и другими соединениями по месту разрыва двойной связи, подчиняясь некоторой закономерности. Она заключается в том, что атом водорода присоединяется к наиболее гидрогенизированному углеродному атому, а ион хлора, брома или йода – к карбоновому атому, содержащему наименьшее количество атомов водорода. Эта особенность протекания реакций присоединения получила название правила В. Марковникова.
Гидратация и полимеризация
Продолжим далее рассматривать физические свойства и применение алкенов на примере первого представителя гомологического ряда – этена. Его реакция взаимодействия с водой используется в промышленности органического синтеза и имеет важное практическое значение. Впервые процесс был проведен еще в XIX веке А.М. Бутлеровым. Реакция требует выполнения ряда условий. Это, прежде всего, использование концентрированной серной кислоты или олеума в качестве катализатора и растворителя этена, давление порядка 10 атм и температура в пределах 70°. Процесс гидратации происходит в две фазы. Вначале по месту разрыва пи-связи к этену присоединяются молекулы сульфатной кислоты, при этом образуется этилсерная кислота. Затем полученное вещество реагирует с водой, получается этиловый спирт. Этанол – важный продукт, применяемый в пищевой промышленности для получения пластмасс, синтетических каучуков, лаков и других продуктов органической химии.
Полимеры на основе олефинов
Продолжая изучать вопрос применения веществ, относящихся к классу алкенов, изучим процесс их полимеризации, в котором могут участвовать соединения, содержащие непредельные химические связи в составе своих молекул. Известно несколько типов реакции полимеризации, по которым происходит образование высокомолекулярных продуктов – полимеров, например таких как полиэтилен, полипропилен, полистирол и т. д. Свободнорадикальный механизм приводит к получению полиэтилена высокого давления. Это одно из наиболее широко применяемых соединений в промышленности. Катионно-ионный тип обеспечивает получение полимера стереорегулярного строения, например полистирола. Он считается одним из наиболее безопасных и удобных в использовании полимеров. Изделия из полистирола устойчивы к агрессивным веществам: кислотам и щелочам, негорючие, легко окрашиваются. Еще один вид механизма полимеризации – димеризация, он приводит к получению изобутена, применяемого в качестве антидетонационной добавки к бензину.
Способы получения
Алкены, физические свойства которых мы изучаем, получают в лабораторных условиях и промышленности различными методами. В опытах в школьном курсе органической химии используют процесс дегидратации этилового спирта с помощью водоотнимающих средств, например таких, как пятиокись фосфора или сульфатная кислота. Реакция проводится при нагревании и является обратной процессу получения этанола. Еще один распространенный способ получения алкенов нашел свое применение в промышленности, а именно: нагревание галогенопроизводных предельных углеводородов, например хлорпропана с концентрированными спиртовыми растворами щелочей – гидроксида натрия или калия. В реакции происходит отщепление молекулы хлороводорода, по месту появления свободных валентностей атомов карбона образуется двойная связь. Конечным продуктом химического процесса будет олефин – пропен. Продолжая рассматривать физические свойства алкенов, остановимся на главном процессе получения олефинов - пиролизе.
Промышленное производство непредельных углеводородов ряда этилена
Дешевое сырье – газы, образующиеся в процессе крекинга нефти, служат источником получения олефинов в химической промышленности. Для этого применяют технологическую схему пиролиза – расщепление газовой смеси, идущее с разрывом углеродных связей и образованием этилена, пропена и других алкенов. Пиролиз проводят в специальных печах, состоящих из отдельных пирозмеевиков. В них создается температура порядка 750-1150°C и присутствует водяной пар в качестве разбавителя. Реакции происходят по цепному механизму, идущему с образованием промежуточных радикалов. Конечный продукт – это этилен или пропен, их получают в больших объемах.
Мы подробно изучили физические свойства, а также применение и способы получения алкенов.